GREEN PIN® CHAIN FITTINGS CATALOGUE

greenpin.com

This catalogue may contain information that has not been updated since the release of this catalogue and has thus become outdated Please consult the specific product pages on the Green Pin® website for the most up to date technical information.

(F)12 10 - 8 - 4

KEY ICONS

Certificates

Depending on the type of product and certificate availability for a certain product, the below mentioned certificates are used in this catalogue. For more information see page 5.

Type 2.1	Works certificate to EN 10204	2.1
Туре 2.2	Works certificate to EN 10204	2.2
Type 3.1	Inspection certificate to EN 10204	3.1
Type MTC a	Manufacturer test certificate	MTC ^a
Type MTC b	Manufacturer test certificate	MTC [▶]
Type MPI a	Non-destructive testing report	MPI ª
Type MPI b	Non-destructive testing report	MPI ^b
Type DGUV	DGUV Type test certificate to EN 1677	DGUV
Туре СЕ	CE declaration of conformity	CE

Conditions

Certificate types 2.1, 2.2, 3.1, DGUV and CE can be supplied at no extra charge. For all other certificates, additional costs will be charged.

Other

CAD drawings	CAD
More info	INFO

EEN PIN® CHAIN FITTINGS CATALOGUE

Green Pin[®] is the leading brand for premium quality lifting and lashing equipment including hooks, swivels, lifting eyes and shortening clutches. What makes it the leading brand? Only Green Pin[®] combines innovative, high-quality products with industry-leading availability and comprehensive, worldwide support. This unique combination means that with Green Pin[®] products you are always ready to get the job done. You are Green to Go.

Green to Quality

Work easier with Green Pin® products that are produced to perfection

- To ensure reliability and quality, Green Pin® products tick all the boxes:
- Developed with a clear view of what you need. When cost-effectiveness was at the top of our customers' agendas;
- Raw materials come from high quality suppliers who guarantee full traceability. For example, our steel is sourced from leading, fully certified European mills;
- Produced at automated production facilities to reduce the margins of error compared to other methods;
- Many products that conform to leading standards and which can be supplied with certificates from class societies.

Green to Speed

Order Green Pin® products from stock worldwide

Producing a good, reliable product is simply not good enough. You must be able to obtain the right products just when you need it: the success of the project depends on it. To ensure that success, Green Pin[®] offers unrivaled product availability:

- The wide Green Pin[®] assortment has an industry-leading stock availability of 99%;
- Over 900 distributors in more than 90 countries stock Green Pin[®] products. All were carefully selected for their sling-making expertise, the value-added services they provide and their stockholding capacity;
- We airfreight highly specialized products (which a distributor may not have in stock) to destination airports of choice within 72 hours* from one of our three distribution centres (Houston, Chicago and The Netherlands).

Green to Service

Rely on the best equipment and support. Guaranteed

Green Pin[®] products are made to meet the demands of the most complex lifting projects in the world. These projects usually require product information of the utmost precision, which often leads to in depth questions about the characteristics and application of Green Pin[®] products. Green Pin[®] therefore offers:

- CAD-drawings and technical documentation that are distinguished by their accuracy;
- A Technical Helpdesk that provides comprehensive answers swiftly;
- Technical training to provide insights into the benefits of our products and the different ways to apply them.

* A different transport duration applies to airfreight to New Zealand and Australia

INTRODUCTION

General

In case you do not use the products yourself but are reselling these as part of a manufactured product, please take our general cautions and warnings into account and make these known to your customers as well. In any case, we do not accept any responsibility or liability, nor can we be held responsible for any misuse or damage with, by or at your customers due to negligent use.

Definitions

Material

Various raw materials are used for the production of chain fittings, depending on the use of the finished product. The following raw materials may be used:

- Alloy steel, quenched and tempered, grade 80;
- Alloy steel, guenched and tempered, grade 100;
- Stainless steel AISI316L or AISI316, grade 50.

Load

Following terms are used to define a load:

- Working Load Limit or WLL: the maximum load the product is designed to support, in general use and in in-line lifting.
- Proof Load or PL: this is the load applied on proof testing the product. At this load the product may not show visual deformation. For information about the proof load applied, we refer to the separate paragraph on testing.
- Minimum Breaking Load or MBL: the minimum load at which the product may fail or no longer support the load. Where applicable the MBL is specified.
- Shock Load: a sudden impact of the load on the lifting product. Shock loads are to be avoided at all times since they increase the stress on the product significantly and may affect its product life.

The unit that is used in this catalogue to indicate WLL, PL and MBL is t, which stands for metric ton.

Safety factor

This indicates the ratio between the MBL and the WLL. Green Pin[®] chain fittings generally have a safety factor of 4:1, with exception of lifting eyes. This means that the product may only break once it is overloaded by a factor of at least 4 times its designed WLL.

Product dimensions

All product dimensions mentioned in this catalogue are nominal dimensions. Product design, materials and/or specifications may be changed without prior notification.

Finish

Products can have the following finish:

- Painted: the finished product is painted in a specific colour.
- Polished: stainless steel products are polished.

Standard

These refer to the specific standards indicated for the product.

Temperature range

This indicates the temperature range at which the product can be used. Beyond the advised temperature range the WLL of a product may be affected.

Abbreviations

The following abbreviations are used in this catalogue:

Product name abbreviations (for example, Green Pin® Self Locking Hook CL GR10)

CL	Clevis
E	Eye
EE	Eye-Eye
GR10	Grade 100
GR5	Grade 50
GR8	Grade 80
S/S	Stainless Steel
S	Swivel
SCL	Swivel Clevis
SE	Swivel Eye

Certificates

Our company has been ISO certified by Lloyd's; currently we are ISO 9001-2015 certified. Depending on the type of product and certificate availability for a certain product, below mentioned certificates can be provided.

Туре 2.1	2.1	Works certificate to EN 10204 Statement of compliance with the order.
Туре 2.2	2.2	Works certificate to EN 10204 Statement of compliance with the order, stating the results of non- specific inspection.
Туре 3.1	3.1	Inspection certificate to EN 10204 Statement of compliance with the order, stating the results of material specific inspection. This includes chemical composition and mechanical properties at component level.
Type MTC a	MTC *	Manufacturer test certificate Statement of compliance with the order, stating the results of proof load testing samples of a production batch. Products are not individually tested.
Type MTC b	MTC [▶]	Manufacturer test certificate Statement of compliance with the order, stating the results of individual proof load testing.
Type MPI a	MPI a	Non-destructive testing report Statement of compliance with the order, stating the results of Magnetic Particle Inspection (M.P.I.) in accordance with EN 10228-1 on samples of a production batch. Products are not individually tested.
Type MPI b	MPI ^b	Non-destructive testing report Statement of compliance with the order, stating the results of individual Magnetic Particle Inspection (M.P.I.) in accordance with EN 10228-1.
Type DGUV	DGUV	DGUV Type test certificate to EN 1677 Many Green Pin [®] chain sling components have a DGUV type test certificate. Tests are based on GS-OA-15-05:2012-05: Principles for the testing and certification of chains and chain components. These components are Type approved to EN 818-2 or EN 1677 and are entitled to be marked H94.
Туре СЕ	CE	CE declaration of conformity CE Declaration of Conformity in accordance with annex IIA of the machine directive 2006/42/EC and the latest amendments.

Conditions

Certificate types 2.1, 2.2, 3.1, DGUV and CE can be supplied at no extra charge. For all other certificates, additional costs will be charged.

Free of Charge:

2.1 2.2 3.1 DGUV MPI^a MPI^b CE

With additional Charges:

MTC ^b

On request the proof load test certificates can be supplied surveyed by an official classification society, such as DNV GL, BV or any other officially certified inspection body. Specific details of certificate availability can be found in each product chapter. Please verify your certification requirements at the time of order. For more information and specifications, see the table below for an overview of the different test methods.

Test method	Test type	Test description	Document
Visual inspection	Non Destructive	The products are inspected and approved by our QC-department. The products are inspected and approved by our QC-department, stating the results of non-specific inspection.	2.1 2.2
Material specific inspection	Destructive	The material of the products is inspected. This includes chemical composition and mechanical properties at component level.	3.1
Proof Load test	Non Destructive	Samples of a production batch of products are proof load tested. Products are not individually tested. All products of a production batch are individually proof load tested.	MTC ^ª MTC ^b
Magnetic Particle inspection	Non Destructive	Samples of a production batch of products are Magnetic Particle Inspection (M.P.I.) tested in accordance with EN 10228-1. Products are not individually tested. All products of a production batch are individually Magnetic Particle Inspection (M.P.I.) tested in accordance with EN 10228-1.	MPI ^a MPI ^b

CAD drawings

Green Pin[®] products are used in a wide variety of applications; from a simple lift to move an item from A to B in a workplace, to very complex lifting systems for offshore applications. In the latter case, engineers use computer programs like AutoCAD to develop a 2D or 3D specification of the entire system.

For standard products engineers normally use a CAD drawing library. The use of these kinds of libraries saves considerable design time and costs. And of course it prevents mistakes that may occur whilst copying data from a product catalogue into the design program.

To help engineers, Green Pin[®] has made CAD drawings available in various formats on the Green Pin[®] website (**www.greenpin.com**). These drawings can be integrated in almost every design program. Further details can be obtained through our website: **www.greenpin.com/cad**

In the product chapters the CAD icon indicates that cad drawings are available.

INFO

More information

For some products we provide detailed technical information on our website. In the product chapters the INFO icon indicates there is extra information on this product available at **www.greenpin.com/FAQ**

General cautions and warnings

All WLL's indicated in this catalogue or in other Green Pin[®] literature or publications are only applicable to recently-supplied, new and unused products used under prescribed operating conditions. Any extreme circumstances or shock loading that occur during use must be taken into account when specifying the products to be used.

The WLL should be applied in in-line lifting. Overloads must be avoided. Side loads should be avoided too, as the products are not designed for this purpose and the application of a side load may significantly decrease product life. The WLL of the product represents the limit in static use. In case of dynamic use (breaking, accelerations, shocks), the effective stress on the product increases significantly which can lead to product failure.

Products must be regularly inspected in accordance with the safety standards valid in the country of use. This is required because the products in use may be affected by wear, misuse, overloading etc. which may lead to deformation and alteration of the material structure. Inspection should take place at least every six months and more frequently when the products are used in severe operating conditions.

Green Pin[®] is constantly improving products to make sure they meet the latest industry standards. Therefore some dimensions or product markings may differ from those stated in this catalogue. The characteristics mentioned in this catalogue or in other Green Pin[®] literature or publications are given merely as an indication. Green Pin[®] reserves the right to make any suitable modification to any product, even after acceptance of the customer order. The essential characteristics and performances of the products shall not be negatively affected by such modifications. Any critical dimensions or characteristics should be verified with our engineering department before ordering the product.

Green Pin[®] products are typically used to transfer loads during lifting, lashing or towing. These fittings are usually combined with steel wire rope, chain or synthetic rope to form a lifting sling. You must therefore conduct the following verifications to safely use the products:

Verification before first use

Before first use of the sling it should be ensured that:

- The sling meets the exact requirements specified in the order;
- The valid manufacturer certificate and CE declaration are at hand;
- The identification and the WLL mentioned on the sling correspond to the information stated on the certificate;
- Full details of the sling (components, diameter, number of legs, angle, grade) are recorded in the register
 of lifting equipment;
- The users of the sling have received appropriate instruction and training.

Verification before each use

Before each use the sling should be visually inspected for obvious damage or deterioration. If faults are found during this inspection, the sling should be withdrawn from service and referred to a competent person for thorough examination. Some parts can be replaced or the complete sling can be discarded.

A thorough inspection should be carried out by a competent person at intervals not exceeding six months and more frequently when the slings are used in severe operation conditions. Records of such inspections should be maintained. Slings should be thoroughly cleaned to remove any oil, dirt or rust prior to inspection. Any cleaning method which does not damage the material is acceptable. Avoid the use of acids, overheating, removal of metal or movement of metal which may cover cracks or surface defects.

The sling should be inspected throughout its full length to detect any evidence of wear, distortion or external damage.

Any replacement component or part of the sling should be in accordance with the appropriate European Standard or the safety standards given in the country of use for that component or part. If a chain link in one of the legs of a chain sling is damaged, then the entire chain leg should be replaced. The repair of a link in a welded chain sling should exclusively be carried out by the chain manufacturer using the adequate welding process. Components showing any defects should be discarded and replaced. When replacing a mechanically assembled component, always use a replacement component that meets the certification requirements of the sling.

Handling of the load

- It is important to check the sling before lifting. Check if the manufacturer of the load indicates any
 specific instructions for the lifting of the load. Before starting the lift, make sure that the load is free to
 move and is not bolted down. Also check if no loose objects could fall down from the load. The path
 between the current location of the load and the new one must be free.
- The weight of the load must be known in order to select a sling with the correct WLL. If the weight of the load is not marked, the information should be obtained from the consignment notes, manuals or drawings, or assessed by calculation.
- Please observe the centre of gravity of the load. To prevent any tilting or toppling, the following conditions should be met:
 - for single leg slings and endless slings the lifting point should be positioned directly above the centre of gravity.
 - for two leg slings the lifting points should be positioned on both sides of, and higher than, the centre of gravity.
 - for three and four leg slings the lifting points should be distributed in a plane around the centre of gravity. Distribute the weight evenly over the lifting points, which should be placed higher than the centre of gravity.
- When using multi leg slings make sure that the angles between the lifting points and sling legs are within the range marked on the sling. The angle ß, which is the angle between the sling leg and the vertical, should never exceed 60°. Details about load reductions for slings at certain angles can be found in the tables corresponding to the relevant chain grade.
- Use the below reduction table if a multi leg sling is not used for the purpose for which it has been designed, for example for a lifting operation with fewer legs than the number of legs of the sling:

Types of chain sling	Number of legs used	Factor to apply to marked WLL
Two-leg	1	1/2
Three- and four-leg	2	2/3
Three- and four-leg	1	1/3

- The sling should at least have a WLL equal to or greater than the weight to be lifted.
- Ensure that the load to be moved is able to resist both the vertical and horizontal force without being damaged.
- A suspended load should not be left unattended.
- Riggers should be aware of the risks and dangers of shock loading which may break the sling. The load should always be lifted and lowered slowly.

Method of connection

- A sling is usually attached to the load with endfittings such as hooks and/or links.
- The components should be used for in-line loading only in order to avoid bending.
- The lifting points fixed on the load should be seated well in the load bearing part of the hook (never on the tip of the hook or wedged in the opening of the hook).
- We refer to the detailed warnings of each component in the product chapters.

Symmetry of loading

The WLL values mentioned in our catalogue for each grade have been determined on the basis that the loading of the sling is symmetrical. This means that when the load is lifted the sling legs are symmetrically distributed in the plane and all legs of the sling have the same angles to the vertical. For chain slings refer to EN 818-6:2000+A1:2008 for more details.

The loading can be assumed to be symmetric if all of the following conditions are met:

- the load is less than 80% of marked WLL and
- sling leg angles to the vertical are all more than 15° and
- sling leg angles to the vertical are all within 15° to each other and
- in the case of three- and four- leg slings, the plane angles are within 15° of each other.

If one of the above parameters is not met, the loading should be considered to be asymmetric and the lift should be referred to a competent engineer to establish the safe rating for the sling. Alternatively, in the case of asymmetric loading, the sling should be derated to half the marked WLL. If the load tends to tilt during the lift, it should be lowered and the attachments changed by repositioning the attachment points or by using compatible shortening devices. The safety factor of 4 or 5 on the individual components is designed for safety only. Never exceed the indicated WLL.

Safety of lift

Hands and other body parts should be kept away from the chain to prevent injuries. The load should be lifted slowly until the sling leg is taut. As soon as the load is slightly raised, check that it is secure and has the desired position. Refer to ISO 12480-1 for planning and management of the lifting operation and for a safe way of executing it. Never move the load over people during the lift.

Lowering the load

The point of destination of the load should be prepared and should be adapted to the weight and shape of the load. The access to this site must be clear of any unnecessary obstacles and people. The load should be lowered carefully. Avoid trapping the sling beneath the load as this may cause damage to the load or sling. Before taking the tension off the sling legs, the load should be checked to ensure that it is properly supported and stable. The sling should be removed by hand and not with the lifting device. The load should not be rolled off the sling as this may damage the sling.

Storage of slings

When not in use slings should be kept on a properly designed rack. They should not be left lying on the ground where they may be damaged. If the slings are left suspended from a crane hook, the sling hooks should be engaged in an upper link to reduce the risk of sling legs swinging freely or snagging. If the slings are out of use for some time they should be cleaned, dried and protected from corrosion, e.g. lightly oiled.

Maintenance

Slings must be regularly inspected in accordance with the safety standards valid in the country of use.

A competent engineer should examine the sling, observing the following:

- the sling markings (ID, WLL) must be legible;
- there may be no distortion of the upper or lower end fittings;
- sling leg stretch and wear may not exceed the tolerances.

If the identification tag of the sling is missing and the necessary information is not marked on the sling itself, the sling should be withdrawn from service. Use original Green Pin[®] spare kits to replace parts (such as a load pin or the latch of a hook) or if a load pin is misused, damaged or distorted.

Limitations in use

- Never modify components by welding, heat treating, grinding or any other process. It could alter their mechanical and/or chemical characteristics;
- Consult Green Pin[®] if the sling is to be exposed to highly concentrated chemicals. Green Pin[®] products
 may not be used under chemical influences such as acids or alkaline solutions;
- The rating of lifting accessories in European Standards assumes the absence of exceptionally hazardous conditions. This concerns offshore activities, lifting of persons and lifting of potentially dangerous loads. In such cases the degree of hazard should be assessed by a competent engineer and the WLL adjusted accordingly;
- If a product is used under extreme temperature conditions, the WLL must be reduced. We refer to the relevant product chapter in this catalogue for guidance on use at extreme temperatures.

To convert						
from	to	multiply by				
Length						
mm	inch	0.0393701				
inch	mm	25.4				
Mass						
US tons	metric tons	0.9071847				
metric tons	US tons	1.1023113				
metric tons	pounds	2204.6226218				
pounds	metric tons	0.0004536				
metric tons	kilogram	1000				
kilogram	metric tons	0.001				
metric tons	kilo Newton	9.8066500				
kilo Newton	metric tons	0.1019716				
pounds	kilogram	0.4535924				
kilogram	pounds	2.2046226				
Torque						
Newton meter	foot pound-force	0.7375621				
foot pound-force	Newton meter	1.3558180				

Grade 80 Working Load Limit table

Temperature

If extreme temperature situations occur, the following load reductions must be taken into account:

Temperature °Fahrenheit	Temperature °Celsius	Reduction for elevated temperatures New Working Load Limit
-40 °F up to 392 °F	-40 °C up to 200 °C	100 % of original WLL
392 - 572 °F	200 - 300 °C	90 % of original WLL
572 - 752 °F	300 - 400 °C	75 % of original WLL
> 752 °F	> 400 °C	not allowed

Working Load Limit table for Grade 80 Chain Slings (US)

Chain Ø	90°	β						
			2 leg sling			3 or 4 leg sling		Endless
	1 leg	0°<ß ≤ 30°	30°<ß ≤ 45°	45°<ß ≤ 60°	0°<ß ≤ 30°	30°<ß ≤ 45°	45°<ß ≤ 60°	Sling
	sling	Safety factor 1.73	Safety factor 1.4	Safety factor 1.0	Safety factor 2.6	Safety factor 2.1	Safety factor 1.5	Safety factor 1.6
inch	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
7/32	2.100	3.600	3.000	2.100	5.500	4.400	3.200	3.360
⁹ / ₃₂	3.500	6.100	4.900	3.500	9.100	7.400	5.200	5.600
5/16	4.500	7.800	6.400	4.500	11.700	9.500	6.800	7.200
³ /8	7.100	12.300	10.000	7.100	18.400	15.100	10.600	11.360
1/2	12.000	20.800	17.000	12.000	31.200	25.500	18.000	19.200
⁵ /8	18.100	31.300	25.600	18.100	47.000	38.400	27.100	28.960
3/4	28.300	49.000	40.000	28.300	73.500	60.000	42.400	45.280
7/8	34.200	59.200	48.400	34.200	88.900	72.500	51.300	54.720
1	47.700	82.600	67.400	47.700	123.900	101.200	71.500	76.320
1 ¹ / ₄	72.300	125.200	102.200	72.300	187.800	153.400	108.400	115.680

Working Load Limit table for Grade 80 Chain Slings to EN 818-4

Cha	in Ø	90°	ß				
Cria			2 leg sling		3 or 4 l	Endless	
		1 leg	0°<ß ≤ 45°	45°<ß ≤ 60°	0°<ß ≤ 45°	45°<ß ≤ 60°	Sling
		sling	Safety factor 1.4	Safety factor 1.0	Safety factor 2.1	Safety factor 1.5	Safety factor 1.6
mm	inch	t	t	t	t	t	t
6	7/32	1.12	1.60	1.12	2.36	1.70	1.80
7	9/32	1.50	2.12	1.50	3.15	2.24	2.50
8	5/16	2.00	2.80	2.00	4.25	3.00	3.15
10	3/8	3.15	4.25	3.15	6.70	4.75	5.00
13	1/2	5.30	7.50	5.30	11.20	8.00	8.50
16	⁵ /8	8.00	11.20	8.00	17.00	11.80	12.50
20	3/4	12.50	17.00	12.50	26.50	19.00	20.00
22	7/8	15.00	21.20	15.00	31.50	22.40	23.60
26	1	21.20	30.00	21.20	45.00	31.50	33.50
32	1 ¹ / ₄	31.50	45.00	31.50	67.00	47.50	50.00

Grade 100 Working Load Limit table

Temperature

If extreme temperature situations occur, the following load reductions must be taken into account:

Temperature °Fahrenheit	Temperature °Celsius	Reduction for elevated temperatures New Working Load Limit
-40 °F up to 392 °F	-40 °C up to 200 °C	100 % of original WLL
392 - 572 °F	200 - 300 °C	90 % of original WLL
572 - 752 °F	300 - 400 °C	75 % of original WLL
> 752 °F	> 400 °C	not allowed

Working Load Limit table for Grade 100 Chain Slings (US)

Chain Ø	90°	β		\mathbf{X}				
Chain Ø			2 leg sling			Endless		
	1 leg	0°<ß ≤ 30°	30°<ß ≤ 45°	45°<ß ≤ 60°	0°<ß ≤ 30°	30°<ß ≤ 45°	45°<ß ≤ 60°	Sling
	sling	Safety factor						
		1.73	1.4	1.0	2.6	2.1	1.5	1.6
inch	lbs	lbs	lbs	lbs	lbs	lbs	lbs	lbs
7/32	2.700	4.700	3.800	2.700	7.000	5.700	4.000	4.320
⁹ / ₃₂	4.300	7.400	6.100	4.300	11.200	9.100	6.400	6.880
⁵ / ₁₆	5.700	9.900	8.100	5.700	14.800	12.100	8.500	9.120
3/8	8.800	15.200	12.400	8.800	22.900	18.700	13.200	14.080
1/2	15.000	26.000	21.200	15.000	39.000	31.800	22.500	24.000
⁵ /8	22.600	39.100	32.000	22.600	58.700	47.900	33.900	36.160
3/4	35.300	61.100	49.900	35.300	91.700	74.900	53.000	56.480
7/8	42.700	74.000	60.400	42.700	110.900	90.600	64.000	68.320

Working Load Limit table for Grade 100 Chain Slings to EN 818-4

Chain Ø		90°	ß		ß	ß	
Cna	Chain Ø		2 leg	sling	3 or 4 l	Endless	
		1 leg	0°<ß ≤ 45°	45°<ß ≤ 60°	0°<ß ≤ 45°	45°<ß ≤ 60°	Sling
		sling	Safety factor				
			1.4	1.0	2.1	1.5	1.6
mm	inch	t	t	t	t	t	t
6	7/32	1.40	1.95	1.40	2.95	2.10	2.24
8	⁵ / ₁₆	2.60	3.69	2.60	5.50	3.90	4.16
10	³ /8	4.00	5.65	4.00	8.50	6.00	6.40
13	1/2	6.80	9.60	6.80	14.20	10.20	10.88
16	⁵ /8	10.30	14.50	10.30	21.80	15.45	16.48
20	3/4	16.00	22.40	16.00	33.60	24.00	25.60
22	7/8	19.00	26.50	19.00	40.00	28.00	30.40

This catalogue may contain information that has not been updated since the release of this catalogue and has thus become outdated. Please consult the specific product pages on the Green Pin® website for the most up to date technical information.

TABLE OF CONTENTS

1 Links	14
2 Swivels	26
3 Hooks	30
4 Lifting Eyes	52
5 Shortening Clutches	58
6 Spare Parts	66

LINKS

Applications

Connecting links are used in the manufacturing of chain slings. Master links are used in the manufacturing of 1 and 2 leg slings. Master link assemblies are used in the manufacturing of 3 and 4 leg slings.

Range

Green Pin® supplies a range of connecting links for 3/16" - 3/4" chain diameters, as well as a range of master links and master link assemblies. Van Beest offers a wide range of other links to complement the Green Pin® assortment.

Design

Connecting links are supplied unassembled and ready for immediate use. Assembly is quick and easy. MS master links (up to 37 t) and type MTS master link assemblies (up to 50 t) are supplied with a flat part for easy connection of the master link to the sling or for easy assembly with the omega link. All master links and connecting links are suitable for lifting purposes.

Connecting links and master links are generally marked with:

- manufacturer's symbol - e.g. GP - e.g. 13 and/or $^{1}/_{2}$ "
- size in mm
- traceability code
- e.g. HA - e.g. 8 or 10
- steel grade
- item code (specific products) - e.g. MJ - e.g. France
- origin (specific products)

Finish

All master links and connecting links are painted. Grade 80 products were painted yellow or red under the Excel® brand. However, grade 80 Links under the Green Pin® brand will be painted white. Grade 100 products are painted blue and will remain so.

Certification

Specific details of certificate availability can be found on each product page. Please verify your certification requirements with Green Pin® at the time of order.

Instructions for use

Connecting links, master links and master link assemblies should be inspected before use to ensure that:

- all markings are legible;
- the link and the assemblies are both made of the same steel grade;
- a link with the correct WLL has been selected with respect to the sling design. For further details, refer to the EN 818 standard for Chain Slings;
- the pin, bush or any other locking system cannot move or vibrate out of position;
- links, assemblies and connecting links are free from nicks, gouges and cracks;
- links, assemblies and connecting links are not heat treated (this may affect their Working Load Limit);
- all components of the sling are of the same steel grade;
- items are not distorted or unduly worn.

Also:

- only use the items for in-line lifting;
- never modify, repair or reshape an item by machining, welding, heating or bending, as this may affect the WLL.

Master links, master link assemblies and connecting links must be regularly inspected in accordance with the safety standards given in the country of use. This is required because the products in use may be affected by issues such as wear, misuse and overloading, which may lead to deformation and alteration of the material structure. Inspection should take place at least every six months, and more frequently when the links are used in severe operating conditions.

Green Pin® Master Link EN 1677-4 GR8

Grade 80 master link EN 1677-4

- Material:
 Safety factor:
- grade 80, alloy steel MBL equals 4 x WLL
- y factor: MBL equals 4

diameter

- Standard:
- ASTM A952/A952M-02, ASME B30.26 and generally to EN 1677-4
- Finish:
- painted yellow (J), red (R) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MTC ^b

diameter

Note:

partnumber

from 50 t without flat part

diameter

	1 leg		2 legs		limit				
а		ß ≤ 30	ß ≤ 45°	ß ≤ 60°		b		d	
inch	inch	inch	inch	inch	t	inch	inch	inch	lbs
1/2	⁷ / ₃₂ - ¹ / ₄	-	⁷ / ₃₂	⁷ / ₃₂ - ¹ / ₄	1.6	3 ¹⁵ / ₁₆	2 ³ /8	⁹ / ₃₂	0.73
⁵ /8	3/8	⁷ / ₃₂ - ¹ / ₄	¹ / ₄ - ⁵ / ₁₆	5/16	3.2	4 ²³ / ₃₂	2 ³ / ₄	⁹ / ₃₂	1.23
²³ / ₃₂	3/8	⁵ / ₁₆	³ /8	³ /8	4.5	5 ⁵ / ₁₆	2 15/16	11/32	1.76
²⁵ / ₃₂	1/2	³ /8	-	1/2	6.2	5 ²⁹ / ₃₂	3 ¹⁷ / ₃₂	11/32	2.45
⁷ /8	5/8	-	1/2	5/8	8.2	5 ²⁹ / ₃₂	3 ¹⁷ / ₃₂	7/16	2.99
³¹ / ₃₂	3/4	1/2	-	3/4	10.6	6 ¹¹ / ₁₆	3 ³ / ₄	1/2	4.32
1 ³ / ₃₂	3/4	-	⁵ /8	3/4	12.8	7 ⁷ /8	4 ²³ / ₃₂	1/2	6.44
1 ³ / ₁₆	³ / ₄ - ⁷ / ₈	5/8	3/4	³ / ₄ - ⁷ / ₈	15.5	7 ⁷ /8	4 ²³ / ₃₂	21/32	7.5
1 ¹³ / ₃₂	-	3/4	3/4	-	20	9 ²⁷ / ₃₂	5 ²⁹ / ₃₂	21/32	13.5
1 ¹ / ₂	1	3/4	7/8	1	25	9 ²⁷ / ₃₂	5 ²⁹ / ₃₂	13/16	15
1 ²³ / ₃₂	-	7/8	1	-	30	11 ¹ / ₃₂	6 11/16	¹³ / ₁₆	23.8
1 ²⁵ / ₃₂	1 ¹ / ₄	1	-	1 ¹ / ₄	37	11 ¹³ / ₁₆	7 ⁷ /8	²⁹ / ₃₂	25.8
1 ³¹ / ₃₂	-	-	1 ¹ / ₄	-	50	11 ¹³ / ₁₆	7 ⁷ /8	-	32.5
2 ⁵ / ₃₂	-	1 ¹ / ₄	-	-	63	13 25/32	7 ⁷ /8	-	44.1
2 ³ / ₄	-		-	-	100	15 ³ / ₄	9 ²⁷ / ₃₂	-	86
3 5/32	-		-	-	125	15 ³ / ₄	9 ²⁷ / ₃₂	-	115
	a inch $1/_2$ $5/_8$ $23/_{32}$ $25/_{32}$ $7/_8$ $31/_{32}$ $1^3/_{32}$ $1^3/_{32}$ $1^3/_{32}$ $1^{3/_{16}}$ $1^{13}/_{32}$ $1^{25}/_{32}$ $1^{25}/_{32}$ $1^{31}/_{32}$ $2^{5}/_{32}$ $2^{3}/_{4}$ $3^{5}/_{32}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 leg a $\beta \leq 30$ inch inch $1/2$ $7/32 - 1/4$ - $5/8$ $3/8$ $7/32 - 1/4$ - $5/8$ $3/8$ $5/16$ - $23/32$ $3/8$ $5/16$ - $25/32$ $1/2$ $3/8$ - $7/8$ $5/8$ - - $31/32$ $3/4$ $1/2$ - $13/16$ $3/4 - 7/8$ $5/8$ - $13/16$ $3/4$ - - $13/16$ $3/4$ - - $13/16$ $3/4$ - - $13/16$ $3/4$ - - $13/16$ $3/4$ - - $13/16$ $3/4$ - - $13/12$ - - - $13/12$ - - - $13/2$ - - - $13/32$ - - <td< td=""><td>1 leg 2 legs a $l \leq 30$ $l \leq 45^{\circ}$ inch inch $lnch$ $lnch$ $lnch$ $1/2$ $7/{32} - 1/4$ - $7/{32}$ $5/8$ $3/8$ $7/{32} - 1/4$ - $7/{32}$ $5/8$ $3/8$ $7/{32} - 1/4$ $1/4 - 5/{16}$ $3/8$ $2^{2}/{32}$ $3/8$ $5/{16}$ $3/8$ - $2^{3}/{32}$ $3/8$ $5/{16}$ $3/8$ - $7/8$ $5/8$ - $1/2$ - $3^{1}/{32}$ $3/4$ $1/2$ - - $1^{3}/{32}$ $3/4$ $1/2$ - - $1^{3}/{32}$ $3/4$ $3/4$ - $1^{11}/{2}$ 1 $3/4$ $7/8$ 1 $1^{25}/{32}$ $7/8$ 1 1 $1^{25}/_{32}$ $1^{1}/4$ 1 - - $1^{3}/_{32}$ $1^{1}/4$ -</td></td<> <td>1 leg2 legsa$B \le 30$$B \le 45^{\circ}$$B \le 60^{\circ}$inchinchinchinchinch$1/2$$7/32 - 1/4$-$7/32$$7/32 - 1/4$$5/8$$3/8$$7/32 - 1/4$$1/4 - 5/16$$5/16$$23/32$$3/8$$5/16$$3/8$$3/8$$25/32$$1/2$$3/8$$1/2$$7/8$$5/8$-$1/2$$5/8$$31/32$$3/4$$1/2$-$3/4$$13/32$$3/4$$5/8$$3/4$$13/32$$3/4$$5/8$$1^{13}/32$-$3/4$$7/8$$1$$1^{25}/32$$1^{1}/4$$1$-$1^{1}/4$$1^{25}/32$$1^{1}/4$$1$-$1^{1}/4$$1^{31/32}$-$1^{1}/4$$1^{1}/4$$2^{5}/32$$1^{1}/4$$1$-$2^{5}/32$$1^{1}/4$$2^{3}/4$-$3^{5}/32$-$1^{1}/4$$-$</td> <td>1 leg2 legslimita$B \leq 30$$B \leq 45^{\circ}$$B \leq 60^{\circ}$inchinchinchinchinch$1/2$$7/{32} - 1/4$-$7/{32}$$7/{32} - 1/4$1/2$7/{32} - 1/4$-$7/{32}$$7/{32} - 1/4$1/2$7/{32} - 1/4$-$7/{32}$$7/{32} - 1/4$$1/2$$3/8$$7/{32} - 1/4$$1/4 - 5/16$$5/16$$23/32$$3/8$$5/16$$3/8$$3/8$$25/32$$1/2$$3/8$-$1/2$$25/32$$1/2$$3/8$-$1/2$$25/32$$3/4$$1/2$-$31/32$$3/4$$1/2$-$31/32$$3/4$$1/2$-$31/32$$3/4$$1/2$-$31/32$$3/4$$1/2$-$13/32$-$3/4$$3/4$$13/16$$3/4 - 7/8$$5/8$$3/4$$3/4$$12.8$$13/16$$3/4 - 7/8$$5/8$$1^{13}/32$-$7/8$1$1^{25}/32$-$7/8$1$1^{25}/32$$1^{11}/4$1-$1^{11}/4$1-$1^{11}/4$$37$$3/32$-$1^{1}/4$$32/32$-$1^{1}/4$-$32/32$-$1^{1}/4$-$32/32$-$1^{1}/4$-$32/32$-$1^{1}/4$-$33/32$-$1^{1}/4$-$33/332$-<!--</td--><td>1 leg2 legslimita$B \leq 30$$B \leq 45^{\circ}$$B \leq 60^{\circ}$limitinchinch$B \leq 30$$B \leq 45^{\circ}$$B \leq 60^{\circ}$b1/2$7/32 - 1/4$-$7/32$$7/32 - 1/4$1.6$3 \cdot 15/16$$5/8$$3/8$$7/32 - 1/4$$1/4 - 5/16$$5/16$$3.2$$4 \cdot 23/32$$23/32$$3/8$$5/16$$3/8$$3/8$$4.5$$5 \cdot 5/16$$25/32$$1/2$$3/8$$1/2$$6.2$$5 \cdot 29/32$$7/8$$5/8$$1/2$$5/8$$8.2$$5 \cdot 29/32$$31/32$$3/4$$1/2$$3/4$$10.6$$6 \cdot 11/16$$1^3/32$$3/4$$1/2$$3/4$$12.8$$77/8$$1^{13/32}$$3/4$$5/8$$3/4$$3/4 - 7/8$$15.5$$77/8$$1^{13/32}$$3/4$$3/4$$200$$9 \cdot 27/32$$1^{14/2}$$1$$3/4$$7/8$$1$$25$$9 \cdot 27/32$$1^{13/32}$$7/8$$1$$300$$11 \cdot 1/32$$1^{25/32}$$1^{14/4}$$1$$1^{14/4}$$37$$11 \cdot 13/16$$1^{31/32}$$1^{1/4}$$633$$13 \cdot 25/32$$1^{25/32}$$1^{1/4}$$1$$100$$11 \cdot 3/16$$1^{31/32}$$1^{1/4}$$633$$13 \cdot 25/32$<t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<></td></td>	1 leg 2 legs a $l \leq 30$ $l \leq 45^{\circ}$ inch inch $lnch$ $lnch$ $lnch$ $1/2$ $7/{32} - 1/4$ - $7/{32}$ $5/8$ $3/8$ $7/{32} - 1/4$ - $7/{32}$ $5/8$ $3/8$ $7/{32} - 1/4$ $1/4 - 5/{16}$ $3/8$ $2^{2}/{32}$ $3/8$ $5/{16}$ $3/8$ - $2^{3}/{32}$ $3/8$ $5/{16}$ $3/8$ - $7/8$ $5/8$ - $1/2$ - $3^{1}/{32}$ $3/4$ $1/2$ - - $1^{3}/{32}$ $3/4$ $1/2$ - - $1^{3}/{32}$ $ 3/4$ $3/4$ - $1^{11}/{2}$ 1 $3/4$ $7/8$ 1 $1^{25}/{32}$ $ 7/8$ 1 1 $1^{25}/_{32}$ $1^{1}/4$ 1 - - $1^{3}/_{32}$ $ 1^{1}/4$ -	1 leg2 legsa $B \le 30$ $B \le 45^{\circ}$ $B \le 60^{\circ}$ inchinchinchinchinch $1/2$ $7/32 - 1/4$ - $7/32$ $7/32 - 1/4$ $5/8$ $3/8$ $7/32 - 1/4$ $1/4 - 5/16$ $5/16$ $23/32$ $3/8$ $5/16$ $3/8$ $3/8$ $25/32$ $1/2$ $3/8$ $ 1/2$ $7/8$ $5/8$ - $1/2$ $5/8$ $31/32$ $3/4$ $1/2$ - $3/4$ $13/32$ $3/4$ $ 5/8$ $3/4$ $13/32$ $ 3/4$ $ 5/8$ $1^{13}/32$ - $3/4$ $7/8$ 1 $1^{25}/32$ $1^{1}/4$ 1 - $1^{1}/4$ $1^{25}/32$ $1^{1}/4$ 1 - $1^{1}/4$ $1^{31/32}$ - $1^{1}/4$ $ 1^{1}/4$ $2^{5}/32$ $1^{1}/4$ 1 - $ 2^{5}/32$ $ 1^{1}/4$ $ 2^{3}/4$ - $ 3^{5}/32$ - $1^{1}/4$ $ -$	1 leg2 legslimita $B \leq 30$ $B \leq 45^{\circ}$ $B \leq 60^{\circ}$ inchinchinchinchinch $1/2$ $7/{32} - 1/4$ - $7/{32}$ $7/{32} - 1/4$ 1/2 $7/{32} - 1/4$ - $7/{32}$ $7/{32} - 1/4$ 1/2 $7/{32} - 1/4$ - $7/{32}$ $7/{32} - 1/4$ $1/2$ $3/8$ $7/{32} - 1/4$ $1/4 - 5/16$ $5/16$ $23/32$ $3/8$ $5/16$ $3/8$ $3/8$ $25/32$ $1/2$ $3/8$ - $1/2$ $25/32$ $1/2$ $3/8$ - $1/2$ $25/32$ $3/4$ $1/2$ - $31/32$ $3/4$ $1/2$ - $31/32$ $3/4$ $1/2$ - $31/32$ $3/4$ $1/2$ - $31/32$ $3/4$ $1/2$ - $13/32$ - $3/4$ $3/4$ $13/16$ $3/4 - 7/8$ $5/8$ $3/4$ $3/4$ 12.8 $13/16$ $3/4 - 7/8$ $5/8$ $1^{13}/32$ - $7/8$ 1 $1^{25}/32$ - $7/8$ 1 $1^{25}/32$ $1^{11}/4$ 1- $1^{11}/4$ 1- $1^{11}/4$ 37 $3/32$ - $1^{1}/4$ $32/32$ - $1^{1}/4$ - $32/32$ - $1^{1}/4$ - $32/32$ - $1^{1}/4$ - $32/32$ - $1^{1}/4$ - $33/32$ - $1^{1}/4$ - $33/332$ - </td <td>1 leg2 legslimita$B \leq 30$$B \leq 45^{\circ}$$B \leq 60^{\circ}$limitinchinch$B \leq 30$$B \leq 45^{\circ}$$B \leq 60^{\circ}$b1/2$7/32 - 1/4$-$7/32$$7/32 - 1/4$1.6$3 \cdot 15/16$$5/8$$3/8$$7/32 - 1/4$$1/4 - 5/16$$5/16$$3.2$$4 \cdot 23/32$$23/32$$3/8$$5/16$$3/8$$3/8$$4.5$$5 \cdot 5/16$$25/32$$1/2$$3/8$$1/2$$6.2$$5 \cdot 29/32$$7/8$$5/8$$1/2$$5/8$$8.2$$5 \cdot 29/32$$31/32$$3/4$$1/2$$3/4$$10.6$$6 \cdot 11/16$$1^3/32$$3/4$$1/2$$3/4$$12.8$$77/8$$1^{13/32}$$3/4$$5/8$$3/4$$3/4 - 7/8$$15.5$$77/8$$1^{13/32}$$3/4$$3/4$$200$$9 \cdot 27/32$$1^{14/2}$$1$$3/4$$7/8$$1$$25$$9 \cdot 27/32$$1^{13/32}$$7/8$$1$$300$$11 \cdot 1/32$$1^{25/32}$$1^{14/4}$$1$$1^{14/4}$$37$$11 \cdot 13/16$$1^{31/32}$$1^{1/4}$$633$$13 \cdot 25/32$$1^{25/32}$$1^{1/4}$$1$$100$$11 \cdot 3/16$$1^{31/32}$$1^{1/4}$$633$$13 \cdot 25/32$<t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<></td>	1 leg2 legslimita $B \leq 30$ $B \leq 45^{\circ}$ $B \leq 60^{\circ}$ limitinchinch $B \leq 30$ $B \leq 45^{\circ}$ $B \leq 60^{\circ}$ b1/2 $7/32 - 1/4$ - $7/32$ $7/32 - 1/4$ 1.6 $3 \cdot 15/16$ $5/8$ $3/8$ $7/32 - 1/4$ $1/4 - 5/16$ $5/16$ 3.2 $4 \cdot 23/32$ $23/32$ $3/8$ $5/16$ $3/8$ $3/8$ 4.5 $5 \cdot 5/16$ $25/32$ $1/2$ $3/8$ $ 1/2$ 6.2 $5 \cdot 29/32$ $7/8$ $5/8$ $ 1/2$ $5/8$ 8.2 $5 \cdot 29/32$ $31/32$ $3/4$ $1/2$ $ 3/4$ 10.6 $6 \cdot 11/16$ $1^3/32$ $3/4$ $1/2$ $ 3/4$ 12.8 $77/8$ $1^{13/32}$ $3/4$ $ 5/8$ $3/4$ $3/4 - 7/8$ 15.5 $77/8$ $1^{13/32}$ $ 3/4$ $3/4$ $ 200$ $9 \cdot 27/32$ $1^{14/2}$ 1 $3/4$ $7/8$ 1 25 $9 \cdot 27/32$ $1^{13/32}$ $ 7/8$ 1 $ 300$ $11 \cdot 1/32$ $1^{25/32}$ $1^{14/4}$ 1 $ 1^{14/4}$ 37 $11 \cdot 13/16$ $1^{31/32}$ $ 1^{1/4}$ $ 633$ $13 \cdot 25/32$ $1^{25/32}$ $1^{1/4}$ 1 $ 100$ $11 \cdot 3/16$ $1^{31/32}$ $ 1^{1/4}$ $ 633$ $13 \cdot 25/32$ <t< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td></t<>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

working

length

width

thickness

weight

In mm

partnumber	diameter	diameter chain 1 leg	diameter chain 2 legs		working load limit	length inside	width inside	thickness	weight each
	а		ß ≤ 45°	ß ≤ 60°		b	с	d	
	mm	mm	mm	mm	t	mm	mm	mm	kg
GPMS13	13	6 - 7	6	6 - 7	1.6	100	60	7	0.33
GPMS16	16	8	7 - 8	8	3.2	120	70	7	0.56
GPMS18	18	10	10	10	4.5	135	75	9	0.8
GPMS20	20	13	-	13	6.2	150	90	9	1.11
GPMS22	22	16	13	16	8.2	150	90	11	1.36
GPMS25	25	18	-	18	10.6	170	95	13	1.96
GPMS28	28	20	16	19	12.8	200	120	13	2.92
GPMS30	30	20 - 22	18	20 - 22	15.5	200	120	17	3.4
GPMS36	36	-	19 - 20	-	20	250	150	17	6.1
GPMS38	38	26	22	26	25	250	150	21	6.8
GPMS44	44	-	26	-	30	280	170	21	10.8
GPMS45	45	32	-	32	37	300	200	23	11.7
GPMS50	50	-	32	-	50	300	200	-	14.75
GPMS55	55	-	-	-	63	350	200	-	20
GPMS70	70	-	-	-	100	400	250	-	39
GPMS80	80	-	-	-	125	400	250	-	52

Green Pin[®] Master Link Assembly EN 1677-4 GR8

- Material:
- grade 80, alloy steel MBL equals 4 x WLL
- Safety factor:
- Standard:
- Finish:
- ASTM A952/A952M-02, ASME B30.26 and generally to EN 1677-4
- painted yellow (J), red (R) or white • Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MTC ^b
- Note:
- from 60 t without flat part

partnumber	diameter	diameter chain 3/4 legs			working load limit	length inside	width inside	diameter	length inside	width inside	thickness	weight each
	a	ß ≤ 30	ß ≤ 45°	ß ≤ 60°		b	с	d	e	f	g	
	inch	inch	inch	inch	t	inch	inch	inch	inch	inch	inch	lbs
GPMTS16	5/8	-	7/32	⁷ / ₃₂ - ¹ / ₄	2.5	4 23/32	2 ³ / ₄	1/2	3 ¹⁵ / ₁₆	2 ³ / ₈	⁹ / ₃₂	2.56
GPMTS18	23/32	⁷ / ₃₂	⁷ / ₃₂ - ¹ / ₄	5/16	3.5	5 ⁵ / ₁₆	2 15/16	⁵ /8	3 ¹⁵ / ₁₆	2 ³ / ₈	1/4	3.86
GPMTS22	7/8	¹ / ₄ - ⁵ / ₁₆	5/16	3/8	6.5	5 ²⁹ / ₃₂	3 ¹⁷ / ₃₂	23/32	4 ²³ / ₃₂	2 ³ / ₄	11/32	6.17
GPMTS25	31/32	³ /8	3/8	1/2	8.5	6 11/16	3 ³ / ₄	²⁵ / ₃₂	4 ²³ / ₃₂	2 ³ / ₄	7/16	8.42
GPMTS28	1 ³ / ₃₂	-	-	-	10	7 ⁷ /8	4 ²³ / ₃₂	²⁵ / ₃₂	4 ²³ / ₃₂	2 ³ / ₄	7/16	10.4
GPMTS30	1 ³ / ₁₆	-	1/2	⁵ /8	13	7 ⁷ /8	5 ²⁹ / ₃₂	7/8	5 ⁵ / ₁₆	2 15/16	9/16	12.9
GPMTS36	1 ¹³ / ₃₂	1/2	⁵ /8	3/4	17	9 ²⁷ / ₃₂	5 ²⁹ / ₃₂	31/32	5 ⁵ / ₁₆	2 15/16	9/16	20.6
GPMTS38	1 ¹ / ₂	-	-	3/4	20	9 ²⁷ / ₃₂	5 ²⁹ / ₃₂	1 ³ / ₃₂	6 11/16	3 ³ / ₄	21/32	25.9
GPMTS44	1 25/32	⁵ / ₈ - ³ / ₄	3/4	7/8	27	11 ¹ / ₃₂	6 ¹¹ / ₁₆	1 5/16	7 ⁷ /8	4 ²³ / ₃₂	21/32	40.8
GPMTS45	1 ²⁵ / ₃₂	3/4	-	-	30	11 13/16	7 ⁷ /8	1 13/32	7 ⁷ /8	4 ²³ / ₃₂	13/16	48.5
GPMTS50	1 31/32	³ / ₄ - ⁷ / ₈	7/8	1	40	11 13/16	7 ⁷ /8	1 ¹ / ₂	9 ²⁷ / ₃₂	3 17/32	13/16	52.9
GPMTS55	2 ⁵ / ₃₂	-	1	1 ¹ / ₄	50	11 13/16	7 ⁷ /8	1 ¹ / ₂	9 ²⁷ / ₃₂	3 17/32	²⁹ / ₃₂	59.5
GPMTS58	2 ⁹ / ₃₂	1	-	-	60	13 25/32	7 7/8	1 ²¹ / ₃₂	9 ²⁷ / ₃₂	3 17/32	-	75
GPMTS70	2 ³ / ₄	-	1 1/4	-	80	15 ³ / ₄	9 ²⁷ / ₃₂	2 5/32	11 ¹³ / ₁₆	5 ²⁹ / ₃₂	-	159
GPMTS80	3 5/32	1 ¹ / ₄	-	-	100	15 ³ / ₄	9 ²⁷ / ₃₂	2 ⁹ / ₃₂	11 13/16	5 ²⁹ / ₃₂	-	203

In mm

partnumber	diameter	diameter chain 3/4 legs		working load limit	length inside	width inside	diameter	length inside	width inside	thickness	weight each
	a	ß ≤ 45°	ß ≤ 60°		b	с	d	e	f	g	
	mm	mm	mm	t	mm	mm	mm	mm	mm	mm	kg
GPMTS16	16	6	6-7	2.5	120	70	13	100	60	7	1.16
GPMTS18	18	6-7	8	3.5	135	75	16	100	60	6	1.75
GPMTS22	22	8	10	6.5	150	90	18	120	70	9	2.8
GPMTS25	25	10	13	8.5	170	95	20	120	70	11	3.82
GPMTS28	28	-	-	10	200	120	20	120	70	11	4.7
GPMTS30	30	13	16	13	200	120	22	135	75	14	5.85
GPMTS36	36	16	18-19	17	250	150	25	135	75	14	9.35
GPMTS38	38	-	20	20	250	150	28	170	95	17	11.75
GPMTS44	45	18-20	22	27	280	170	33	200	120	17	18.5
GPMTS45	45	-	-	30	300	200	36	200	120	21	22
GPMTS50	50	22	26	40	300	200	38	150	90	21	24
GPMTS55	55	26	32	50	300	200	38	150	90	23	27
GPMTS58	58	-	-	60	350	200	42	150	90	-	34
GPMTS70	70	32	-	80	400	250	55	300	150	-	72
GPMTS80	80	-	-	100	400	250	58	300	150	-	92

CAD

LINKS

Green Pin® Omega Link EN 1677-1 GR8

Grade 80 omega link EN 1677-1

- Material: alloy steel, grade 80, quenched and tempered MBL equals 4 x WLL
- Safety factor:
- Standard:
- ASTM A952/A952M-02 and EN 1677-1 painted yellow (J), red (R) or white
- Finish:
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI b DGUV
- Note:

со

partnumber	for chain	working	width	diameter	width	length	width	length	thickness	width	width	thickness	weight
	diameter	load		pin		inside	bow	outside		outside	outside		each
		limit											
			а	b		d	e	f	g	h	i	j	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPCO5	3/16	0.8	⁹ / ₁₆	1/4	⁹ / ₃₂	1 ¹ / ₃₂	²⁵ / ₃₂	2 ³ / ₃₂	1/2	1 5/8	1 ³ / ₃₂	1/4	0.15
GPCO6	⁷ / ₃₂	1.12	⁹ / ₁₆	⁵ / ₁₆	⁹ / ₃₂	³¹ / ₃₂	²⁵ / ₃₂	2 ³ / ₃₂	1/2	1 ⁵ /8	1 ³ / ₃₂	1/4	0.15
GPCO7/8	1/4 - 5/16	2	²⁵ / ₃₂	11/32	¹¹ / ₃₂	1 11/32	15/16	2 25/32	⁵ /8	2 ⁵ / ₃₂	1 ¹ / ₄	11/32	0.44
GPCO10	3/8	3.2	3/4	1/2	¹⁵ / ₃₂	1 9/16	1 ⁷ / ₃₂	3 ⁷ / ₃₂	²¹ / ₃₂	2 15/32	1 21/32	7/16	0.62
GPCO13	1/2	5.4	³¹ / ₃₂	⁵ /8	¹⁹ / ₃₂	2	1 ⁹ / ₁₆	4 ³ / ₁₆	²⁵ / ₃₂	3 5/16	2 ¹ / ₈	⁹ / ₁₆	1.41
GPCO16	⁵ /8	8.2	1 ¹ / ₄	²⁵ / ₃₂	3/4	2 17/32	1 ⁷ /8	5 ³ / ₁₆	³¹ / ₃₂	4 ³ / ₃₂	2 11/16	²¹ / ₃₂	2.82
GPCO18/20	3/4	12.8	1 ¹ / ₂	15/16	²⁹ / ₃₂	3 ⁵ / ₃₂	2 5/16	6 13/32	1 ³ / ₁₆	4 31/32	3 ⁷ / ₃₂	7/8	4.96

specific load pins available for $^{3}/_{16}$ inch, $^{9}/_{32}$ inch and $^{11}/_{32}$ inch hoist chains on request

.

In mm

partnumber	for chain	working	width	diameter	width	length	width	length	thickness	width	width	thickness	weight
	diameter	load		pin		inside	bow	outside		outside	outside		each
		limit											
			а	b	с	d	e	f	g	h	i	j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPCO5	5	0.8	14	6	7	26	20	53	13	41	28	6	0.07
GPCO6	6	1.12	14	8	7	25	20	53	13	41	28	6	0.07
GPCO7/8	7-8	2	20	9	9	34	24	71	16	55	32	9	0.20
GPCO10	10	3.2	19	13	12	40	31	82	17	63	42	11	0.28
GPCO13	13	5.4	25	16	15	51	40	106	20	84	54	14	0.64
GPCO16	16	8.2	32	20	19	64	48	132	25	104	68	17	1.28
GPCO18/20	18-20	12.8	38	24	23	80	59	163	30	126	82	22	2.25

CAD

Green Pin[®] Pear Shaped Link EN 1677-4 GR8

alloy steel, grade 80, quenched and tempered

ASTM A952/A952M-02 and EN 1677-4 painted yellow (J), red (R) or white

Grade 80 pear shaped link EN 1677-4

MBL equals 4 x WLL

• Temperature range: -40°F up to +392°F (-40°C up to +200°C)

2.1 2.2 3.1 MPI ^b

• Material:

• Standard:

• Finish:

Note:

Safety factor:

• Certification:

1

	diameter	load		pin		inside	inside		outside	each
		limit								
			а	b		d	e	f	g	
	inch	t	inch	inch	inch	inch	inch	inch	inch	lbs
GPMP5	³ / ₁₆	0.8	3 11/32	1/4	⁹ / ₃₂	2 17/32	1 5/16	4 ⁹ / ₃₂	2 ⁵ / ₃₂	0.31
GPMP6	⁷ / ₃₂	1.12	3 ⁵ / ₁₆	⁵ / ₁₆	⁹ / ₃₂	2 17/32	1 5/16	4 ⁹ / ₃₂	2 ⁵ / ₃₂	0.31
GPMP7/8	¹ / ₄ - ⁵ / ₁₆	2	3 31/32	¹¹ / ₃₂	¹¹ / ₃₂	3 ¹ / ₃₂	1 ⁹ / ₁₆	5 ³ / ₁₆	2 ²³ / ₃₂	0.75
GPMP10	3/8	3.2	4 ²⁹ / ₃₂	1/2	¹⁵ / ₃₂	3 ¹³ / ₁₆	1 31/32	6 ¹ / ₂	3 ⁵ / ₁₆	1.70
GPMP13	1/2	5.4	6 ¹¹ / ₃₂	⁵ /8	¹⁹ / ₃₂	4 ²⁹ / ₃₂	2 ¹⁹ / ₃₂	8 ³ /8	4 ¹¹ / ₃₂	3.57
GPMP16	⁵ /8	8.2	7 25/32	²⁵ / ₃₂	3/4	6 ¹ / ₁₆	3 ⁵ / ₁₆	10 5/16	5 ¹ / ₂	6.00
GPMP18/20	3/4	12.8	9 ³¹ / ₃₂	¹⁵ / ₁₆	²⁹ / ₃₂	7 ²⁵ / ₃₂	4 ³ / ₃₂	13 ¹ / ₃₂	6 ¹⁷ / ₃₂	9.44
						·	·			

partnumber for chain working length diameter width length width length width weight

specific load pins available for ${}^{3}/_{16}$ inch, ${}^{9}/_{32}$ inch and ${}^{11}/_{32}$ inch hoist chains on request

partnumber	for chain diameter	working load limit	length	diameter pin	width	length inside	width inside	length	width outside	weight each
			а	b	с	d	е	f	g	
	mm	t	mm	mm	mm	mm	mm	mm	mm	kg
GPMP5	5	0.8	85	6	7	64	33	109	55	0.14
GPMP6	6	1.12	84	8	7	64	33	109	55	0.14
GPMP7/8	7-8	2	101	9	9	77	40	132	69	0.34
GPMP10	10	3.2	125	13	12	97	50	165	84	0.77
GPMP13	13	5.4	161	16	15	125	66	213	110	1.62
GPMP16	16	8.2	198	20	19	154	84	262	140	2.72
GPMP18/20	18-20	12.8	253	24	23	198	104	331	166	4.28

CAD

In mm

Green Pin® Connecting Link EN 1677-1 GR8

Grade 80 connecting link EN 1677-1

- Material: alloy steel. grade 80. quenched and tempered
- Safety factor:
- MBL equals 4 x WLL ASTM A952/A952M-02 and EN 1677-1
- Standard: ASTM
- Finish:
- painted yellow (J). red (R) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI ^b DGUV

partnumber	for chain diameter	working load	diameter	width outside	width inside	length inside	length inside	diameter eye	width inside	weight each
		umit								
			a 		с 	a 	е 	т 	9 	
	inch	t	Inch	Inch	inch	inch	Inch	inch	Inch	lbs
GPMJ6	7/32	1.12	5/16	1 ²¹ / ₃₂	7/16	²⁵ / ₃₂	2 ² / ₁₆	7/16	¹⁹ / ₃₂	0.20
GPMJ7/8	¹ / ₄ - ⁵ / ₁₆	2	11/32	2 ³ / ₃₂	⁹ / ₁₆	²⁵ / ₃₂	2 ⁵ / ₃₂	1/2	3/4	0.33
GPMJ10	³ /8	3.2	¹³ / ₃₂	2 ¹⁹ / ₃₂	²³ / ₃₂	²⁹ / ₃₂	2 ¹⁷ / ₃₂	²³ / ₃₂	²⁹ / ₃₂	0.62
GPMJ13	1/2	5.4	9/16	3 ⁹ / ₃₂	¹³ / ₁₆	1 ¹ / ₄	3 ¹¹ / ₃₂	15/16	1 ³ / ₃₂	1.39
GPMJ16	⁵ /8	8.2	²¹ / ₃₂	4 ¹ / ₁₆	³¹ / ₃₂	1 ⁹ / ₁₆	4 ¹ / ₈	1 ³ / ₃₂	1 11/32	2.56
GPMJ18/20	3/4	12.8	¹³ / ₁₆	4 ²³ / ₃₂	1 5/16	1 31/32	5 ³ / ₃₂	1 5/16	1 21/32	4.30
GPMJ22	7/8	15.5	²⁹ / ₃₂	5 ⁵ /8	1 ⁹ / ₁₆	2 ⁵ / ₃₂	5 ¹ / ₂	1 15/32	2	6.48
GPMJ26	1	21.6	1 ¹ / ₃₂	6 5/16	1 ²⁵ / ₃₂	2 ³ /8	6 ¹ / ₃₂	1 13/16	2 ¹ / ₄	9.08
GPMJ32	1 ¹ / ₄	32.8	1 ¹⁷ / ₃₂	7 ³ / ₄	2 ² / ₁₆	2 11/16	6 ²⁷ / ₃₂	2 7/32	2 5/8	18.30

In mm

partnumber	for chain diameter	working load	diameter	width outside	width inside	length inside	length inside	diameter eye	width inside	weight each
		limit								
			а	b	с	d	е	f	g	
	mm	t	mm	mm	mm	mm	mm	mm	mm	kg
GPMJ6	6	1.12	8	42	11	20	52	11	15	0.09
GPMJ7/8	7-8	2	9	53	14	20	55	13	19	0.15
GPMJ10	10	3.2	10	66	18	23	64	18	23	0.28
GPMJ13	13	5.4	14	83	21	32	85	24	28	0.63
GPMJ16	16	8.2	17	103	25	40	105	28	34	1.16
GPMJ18/20	18-20	12.8	21	120	33	50	129	33	42	1.95
GPMJ22	22	15.5	23	143	40	55	140	37	51	2.94
GPMJ26	26	21.6	26	160	45	60	153	46	57	4.12
GPMJ32	32	32.8	39	197	52	68	174	56	67	8.3

CAD INFO

1

Green Pin® Master Link GR10

Grade 100 master link

- Material:
- Safety factor:
- Standard:
- Finish:
- painted blue • Temperature range: -40°F up to +392°F (-40°C up to +200°C)

alloy steel, grade 100, quenched and tempered

- Certification:
 - 2.1 2.2 3.1 MTC ^b

MBL equals 4 x WLL

ach
sacii
lbs
).73
1.23
1.76
3.24
4.78
3.42
L9.8

the grade 100 chain fittings range design follows the EN1677 with values for grade 100

In mm

partnumber	diameter	diameter chain 1 leg	dian ch 2 le	neter ain egs	working load limit	length inside	width inside	thickness	weight each
	а		ß ≤ 45°	ß ≤ 60°		b	с	d	
	mm	mm	mm	mm	t	mm	mm	mm	kg
GPUMS13	13	6	6	6	2	100	60	7	0.33
GPUMS16	16	8	-	8	3.2	120	70	7	0.56
GPUMS18	18	10	8	10	5.4	135	75	9	0.8
GPUMS22	22	13	10	13	8.2	170	90	11	1.47
GPUMS25	25	16	13	16	11.2	190	105	13	2.17
GPUMS30	30	20	16	20	16	235	125	17	3.82
GPUMS40	40	22	20-22	22	27.6	290	160	21	9

CAD

Green Pin® Master Link Assembly GR10

Grade 100 master link assembly

ß ≤ 30

inch

⁹/₃₂ - ⁵/₁₆

3/8

 $^{1}/_{2}$

_

 $^{3}/_{4}$

- Material:
- alloy steel, grade 100, quenched and tempered MBL equals 4 x WLL
- Safety factor:
 Standard:
- Finish:
- the grade 100 chain fittings range design follows the EN1677 with values for grade 100 painted blue

working

load

limit

3.5

6.5

11

17.5

21.2

41.6

width

inside

inch

2 15/16

3 17/32

4 17/32

5²⁹/₃₂

6 5/16

7 ⁷/8

length

inside

inch

5 5/16

6 11/16

8 ⁹/₃₂

10 5/8

11 7/32

11 13/16

diameter

inch

⁵/8

23/32

25/32

³¹/₃₂

 $1^{3}/_{16}$

1 ³/₁₆

length

inside

inch

3 15/16

4 23/32

4²³/₃₂

5 5/16

6 11/16

6 11/16

width

inside

inch

2 ³/8

2 3/4

2 ³/₄

2 15/16

3 ³/₄

3 ³/₄

thickness

inch

⁹/₃₂

 $^{11}/_{32}$

7/16

¹/₂

⁵/8

13/16

weight

each

3.86

6.42

10.5

21.2

29.5

53.9

Finish:

partnumber

GPUMTS18

GPUMTS22

GPUMTS28

GPUMTS36

GPUMTS38

In mm

GPUMTS50 1 31/32

• Temperature range: -40°F up to +392°F (-40°C up to +200°C)

diameter

chain

3/4 legs

ß ≤ 45°

inch

7/32

⁹/₃₂ - ⁵/₁₆

3/8

¹/₂

⁵/8

3/4

ß ≤ 60°

inch

7/32

⁹/₃₂ - ³/₈

1/2

⁵/8

3/4

⁷/8

• Certification: 2.1 2.2 3.1 MTC ^b

diameter

inch

²³/₃₂

⁷/8

1 ³/₃₂

1 13/32

 $1^{1/2}$

partnumber	diameter	diameter chain 3/4 legs		working load limit	length inside	width inside	diameter	length inside	width inside	thickness	weight each
	а	ß ≤ 45°	ß ≤ 60°		b		d	е	f	g	
	mm	mm	mm	t	mm	mm	mm	mm	mm	mm	kg
GPUMTS18	18	6	6	3.5	135	75	16	100	60	7	1.75
GPUMTS22	22	8	8-10	6.5	170	90	18	120	70	9	2.91
GPUMTS28	28	10	13	11	210	115	20	120	70	11	4.74
GPUMTS36	36	13	16	17.5	270	150	25	135	75	13	9.6
GPUMTS38	38	16	18-19	21.2	285	160	30	170	95	16	13.38
GPUMTS50	50	20	22	41.6	300	200	38	170	95	21	24.5

CAD

1

Green Pin® Omega Link GR10

Grade 100 omega link

- Material: alloy steel, grade 100, quenched and tempered
- Safety factor: MBL equals 4 x WLL
- Standard:
- r: MBL equals 4 x WLL ASTM A952/A952M-02 and the grade 100 chain fittings range design follows the EN1677 with values for grade 100

.

....

- Finish: painted blue
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification:
 2.1 2.2 3.1 MPI ^b DGUV

partnumber	diameter	load limit	width	pin	width	inside	bow	outside	unickness	outside	outside	unickness	each
			а	b		d	е	f	g	h	i	j	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPUCO6	7/32	1.4	⁹ / ₁₆	⁵ / ₁₆	⁹ / ₃₂	³¹ / ₃₂	²⁵ / ₃₂	2 ³ / ₃₂	1/2	1 ⁵ /8	1 ³ / ₃₂	1/4	0.15
GPUCO7	⁹ / ₃₂	1.95	¹³ / ₁₆	¹³ / ₃₂	¹¹ / ₃₂	1 ¹¹ / ₃₂	¹⁵ / ₁₆	2 ²⁷ / ₃₂	⁵ /8	2 ⁹ / ₃₂	1 ¹ / ₄	¹¹ / ₃₂	0.40
GPUCO8	⁵ / ₁₆	2.6	¹³ / ₁₆	¹³ / ₃₂	¹¹ / ₃₂	1 ¹¹ / ₃₂	¹⁵ / ₁₆	2 ²⁷ / ₃₂	⁵ /8	2 ⁹ / ₃₂	1 ¹ / ₄	¹¹ / ₃₂	0.40
GPUCO10	3/8	4	¹³ / ₁₆	1/2	¹⁵ / ₃₂	1 ⁹ / ₁₆	1 ⁷ / ₃₂	3 ⁵ / ₁₆	3/4	2 ⁵ /8	1 ²¹ / ₃₂	⁷ / ₁₆	0.62
GPUCO13	1/2	6.8	1 ³ / ₃₂	5/8	¹⁹ / ₃₂	2	1 ⁹ / ₁₆	4 ⁹ / ₃₂	²⁹ / ₃₂	3 ¹⁷ / ₃₂	2 ¹ / ₈	⁹ / ₁₆	1.41
GPUCO16	⁵ /8	10.3	1 ³ /8	²⁵ / ₃₂	3/4	2 17/32	1 ⁷ /8	5 ⁵ / ₁₆	1 ¹ / ₁₆	4 ¹¹ / ₃₂	2 11/16	21/32	2.67

partnumber	for chain diameter	working load limit	width	diameter pin	width	length inside	width bow	length outside	thickness	width outside	width outside	thickness	weight each
			а	b	с	d	е	f	g	h	i	j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPUCO6	6	1.4	14	8	7	25	20	53	13	41	28	6	0.07
GPUCO7		1.95	21	10	9	34	24	72	16	58	32	9	0.18
GPUCO8	8	2.6	21	10	9	34	24	72	16	58	32	9	0.18
GPUCO10	10	4	21	13	12	40	31	84	19	67	42	11	0.28
GPUCO13	13	6.8	28	16	15	51	40	109	23	90	54	14	0.64
GPUCO16	16	10.3	35	20	19	64	48	135	27	110	68	17	1.21

CAD

Green Pin[®] Pear Shaped Link GR10

Grade 100 pear shaped link

- Material: alloy steel, grade 100, quenched and tempered
- Safety factor: MBL equals 4 x WLL
- Standard:
- rd: ASTM A952/A952M-02 and the grade 100 chain fittings range design follows the EN1677 with values for grade 100
- Finish:
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)

painted blue

• Certification: 2.1 2.2 3.1 MPI ^b

Green Pin

UMP

partnumber	for chain diameter	working load limit	length	diameter pin	width	length inside	width inside	length	width outside	weight each
			а	b	с	d	е	f	g	
	inch	t	inch	inch	inch	inch	inch	inch	inch	lbs
GPUMP6	⁷ / ₃₂	1.4	3 ⁵ / ₁₆	⁵ / ₁₆	⁹ / ₃₂	2 ¹⁷ / ₃₂	1 5/16	4 ⁹ / ₃₂	2 ⁵ / ₃₂	0.31
GPUMP7	⁹ / ₃₂	1.95	3 ¹⁵ / ₁₆	¹³ / ₃₂	¹¹ / ₃₂	3 ¹ / ₃₂	1 9/16	5 ³ / ₁₆	2 23/32	0.62
GPUMP8	⁵ / ₁₆	2.6	3 ¹⁵ / ₁₆	¹³ / ₃₂	¹¹ / ₃₂	3 ¹ / ₃₂	1 ⁹ / ₁₆	5 ³ / ₁₆	2 ²³ / ₃₂	0.62
GPUMP10	³ /8	4	4 ²⁹ / ₃₂	¹ / ₂	¹⁵ / ₃₂	3 13/16	1 ³¹ / ₃₂	6 ¹ / ₂	3 ⁵ / ₁₆	1.69
GPUMP13	¹ / ₂	6.8	6 ¹¹ / ₃₂	⁵ /8	¹⁹ / ₃₂	4 ²⁹ / ₃₂	2 ¹⁹ / ₃₂	8 ³ /8	4 ¹¹ / ₃₂	3.09
GPUMP16	⁵ /8	10.3	7 ²⁵ / ₃₂	25/32	3/4	6 ¹ / ₁₆	3 5/16	10 5/16	5 ¹ / ₂	6.00

In mm

partnumber	for chain diameter	working load limit	length	diameter pin	width	length inside	width inside	length	width outside	weight each
			а	b		d	е	f	g	
	mm	t	mm	mm	mm	mm	mm	mm	mm	kg
GPUMP6	6	1.4	84	8	7	64	33	109	55	0.14
GPUMP7		1.95	100	10	9	77	40	132	69	0.28
GPUMP8	8	2.6	100	10	9	77	40	132	69	0.28
GPUMP10	10	4	125	13	12	97	50	165	84	0.77
GPUMP13	13	6.8	161	16	15	125	66	213	110	1.4
GPUMP16	16	10.3	198	20	19	154	84	262	140	2.72

CAD

Green Pin® Connecting Link GR10

Grade 100 connecting link

- alloy steel, grade 100, quenched and tempered • Material:
- Safety factor: MBL equals 4 x WLL
- Standard:
- ASTM A952/A952M-02 and the grade 100 chain fittings range design follows the EN1677 with values for grade 100
- Finish: painted blue
- Temperature range: -40°F up to +392°F (-40°C up to +200°C) 2.1 2.2 3.1 MPI ^b DGUV
- Certification:

	diameter	load		outside	inside	inside	inside	eye	inside	each
		limit								
			а	b	с	d	е	f	g	
	inch	t	inch	inch	inch	inch	inch	inch	inch	lbs
GPUMJ6	⁷ / ₃₂	1.4	⁵ / ₁₆	1 ²¹ / ₃₂	7/16	²⁵ / ₃₂	2 ² / ₁₆	7/16	¹⁹ / ₃₂	0.20
GPUMJ8	⁵ / ₁₆	2.6	¹¹ / ₃₂	2 ³ / ₃₂	⁹ / ₁₆	²⁵ / ₃₂	2 ⁵ / ₃₂	⁵ /8	3/4	0.40
GPUMJ10	³ /8	4	¹⁵ / ₃₂	2 ¹⁹ / ₃₂	23/32	²⁹ / ₃₂	2 ¹⁷ / ₃₂	23/32	²⁹ / ₃₂	0.68
GPUMJ13	¹ / ₂	6.8	⁵ /8	3 ⁹ / ₃₂	¹³ / ₁₆	1 ¹ / ₄	3 ¹¹ / ₃₂	¹⁵ / ₁₆	1 ³ / ₃₂	1.50
GPUMJ16	⁵ /8	10.3	3/4	4 ¹ / ₁₆	³¹ / ₃₂	1 ⁹ / ₁₆	4 ¹ / ₈	1 ³ / ₃₂	1 ¹¹ / ₃₂	2.80
GPUMJ20	3/4	16	²⁹ / ₃₂	4 ¹³ / ₁₆	1 5/16	1 15/16	5 ¹ / ₃₂	1 ¹ / ₂	1 21/32	5.00

partnumber for chain working diameter width width length length diameter width weight

In mm

partnumber	for chain diameter	working load limit	diameter	width outside	width inside	length inside	length inside	diameter eye	width inside	weight each
			а	b	с	d	e	f	g	
	mm	t	mm	mm	mm	mm	mm	mm	mm	kg
GPUMJ6	6	1.4	8	42	11	20	52	11	15	0.09
GPUMJ8	8	2.6	9	57	14	20	55	16	19	0.18
GPUMJ10	10	4	12	66	18	23	64	18	23	0.31
GPUMJ13	13	6.8	16	83	21	32	85	24	28	0.68
GPUMJ16	16	10.3	19	103	25	40	105	28	34	1.27
GPUMJ20	20	16	23	122	33	49	128	38	42	2.27

CAD INFO

SWIVELS

Applications

Swivels are used to prevent chain from transferring their normal twisting motion to the item being lifted. Green Pin[®] swivels without bearings are not designed to rotate under load, but are intended as positioning devices only. For rotation under load, thrust bearing swivels or needle bearing swivels should be used. Our swivels can be supplied with one type of end fitting.

Range

Green Pin® offers two types of swivels:

- Grade 80 needle bearing swivel (eye-eye), ranging from WLL 1.12 up to 12.8 tons;
- Grade 100 needle bearing swivel (eye-eye), ranging from WLL 1.4 up to 16 tons;

Van Beest offers a wide range of other swivels to complement the Green Pin® assortment.

Design

Green Pin® swivels are drop forged. The needle bearing swivels do not require greasing during use.

Each swivel is generally marked with:

Working Load Limit
e.g. 2.4 t
manufacturer's symbol
e.g. GP
size in mm and/or inch
e.g. 13 and/or ¹/₂" or ⁵/₈"
traceability code
e.g. HA
steel grade
8 or 10
item code
e.g. ELR
origin
e.g. France

Finish

Green Pin[®] needle bearing swivels are painted. Grade 80 products were painted yellow or red under the Excel[®] brand. However, grade 80 swivels under the Green Pin[®] brand will be painted white. Grade 100 products are painted blue and will remain so.

Certification

Specific details of certificate availability can be found on each product page. Please verify your certification requirements at the time of order.

Instructions for use

Swivels should be inspected before use to ensure that:

- all markings are legible;
- a swivel with the correct WLL has been selected;
- the bolt, nut or any other locking system cannot vibrate out of position;
- swivels are free from nicks, gouges and cracks;
- swivels and the other components are all of the same steel grade;
- swivels are not distorted or unduly worn.

Also:

- swivels must be used for in-line lifting only;
- swivels may not be heat treated as this may affect their WLL;
- never modify, repair or reshape a swivel by machining, welding, heating or bending as this may affect the WLL.

The WLL should be applied in-line. Avoid overloads. Side loading is not allowed since the swivels are not designed for this purpose. Never replace a swivel pin or nut with a pin other than the one designed for the purpose, as otherwise the swivel may not be suitable for the load imposed. Swivels must be regularly inspected in accordance with the safety standards given in the country of use. This is required because the products in use may be affected by issues such as wear, misuse and overloading, which may lead to deformation and alteration of the material structure. Inspection should take place at least every six months and more frequently when the swivels are used in severe operating conditions.

Assembly

Swivels with an eye-fitting must be connected to lifting chain through a connector such as a connecting link.

2

Green Pin[®] Needle Bearing Swivel EE GR8

alloy steel, grade 80, quenched and tempered

Grade 80 needle bearing eye-eye swivel

MBL equals 4 x WLL

2.1 2.2 3.1 MPI ^b

painted red (R) or white • Temperature range: -40°F up to +392°F (-40°C up to +200°C)

ELR

partnumber	for chain	working	diameter	length	width	length	width	length	thickness	weight
	diameter	load		outside	outside	inside	inside			each
		limit								
			а	b	с	d	е	f	g	
	inch	t	inch	inch	inch	inch	inch	inch	inch	lbs
GPELR0	³ / ₁₆ - ⁷ / ₃₂	1.12	⁷ / ₁₆	5 ²⁹ / ₃₂	2 ⁷ / ₃₂	1 ⁵ / ₁₆	1 ¹ / ₄	4 31/32	1/4	1.34
GPELR1	¹ / ₄ - ⁵ / ₁₆	2	⁹ / ₁₆	7 ¹ /8	2 ⁹ / ₁₆	1 ⁹ / ₁₆	1 ¹⁵ / ₃₂	6 ¹ / ₃₂	⁵ / ₁₆	2.36
GPELR2	³ /8	3.2	²³ / ₃₂	8 ²⁹ / ₃₂	3 ¹ /8	1 ²⁷ / ₃₂	1 ⁷ /8	7 ¹¹ / ₁₆	⁷ / ₁₆	4.19
GPELR3	¹ / ₂	5.4	²⁵ / ₃₂	10 ⁹ / ₁₆	3 ²⁵ / ₃₂	2 ⁵ / ₁₆	2 ⁹ / ₃₂	8 ¹⁵ / ₁₆	⁹ / ₁₆	6.99
GPELR4	⁵ /8	8.2	²⁹ / ₃₂	13 ¹ / ₃₂	4 ³ / ₄	2 ⁵ /8	2 ⁷ /8	11 ¹ / ₁₆	²¹ / ₃₂	14.20
GPELR5	3/4	12.8	1 ³ / ₃₂	14 ⁷ /8	5 ³ / ₁₆	3 ¹⁵ / ₃₂	3 ⁷ / ₃₂	12 ²⁹ / ₃₂	7/8	17.09

equipped with two needle roller thrust bearings to enable rotation under load

In mm

• Material:

• Finish:

• Note:

• Safety factor:

• Certification:

partnumber	for chain diameter	working load	diameter	length outside	width outside	length inside	width inside	length	thickness	weight each
		limit								
			а	b	с	d	е	f	g	
	mm	t	mm	mm	mm	mm	mm	mm	mm	kg
GPELR0	5-6	1.12	11	150	56	33	32	126	6	0.61
GPELR1	7-8	2	14	181	65	40	37	153	8	1.07
GPELR2	10	3.2	18	226	79	47	48	195	11	1.9
GPELR3	13	5.4	20	268	96	59	58	227	14	3.17
GPELR4	16	8.2	23	331	121	67	73	281	17	6.44
GPELR5	18-20	12.8	28	378	132	88	82	328	22	7.75

CAD

SWIVELS

GTP Green Pin

Green Pin® Needle Bearing Swivel EE GR10

alloy steel, grade 100, quenched and tempered

Grade 100 needle bearing eye-eye swivel

MBL equals 4 x WLL painted blue

• Temperature range: -40°F up to +392°F (-40°C up to +200°C)

2.1 2.2 3.1 MPI ^b

G

UELR

partnumber	for chain	working	diameter	length	width	length	width	length	thickness	weight
	diameter	load		outside	outside	inside	inside			each
		limit								
			а	b	с	d	е	f	g	
	inch	t	inch	inch	inch	inch	inch	inch	inch	lbs
GPUELRO	7/32	1.4	7/16	5 ²⁹ / ₃₂	2 ⁷ / ₃₂	1 5/16	1 ¹ / ₄	4 ³¹ / ₃₂	1/4	1.34
GPUELR1	⁹ / ₃₂ - ⁵ / ₁₆	2.6	⁹ / ₁₆	7 ¹ / ₈	2 ⁹ / ₁₆	1 ⁹ / ₁₆	1 15/32	6 ¹ / ₃₂	5/16	2.36
GPUELR2	3/8	4	²³ / ₃₂	8 ²⁹ / ₃₂	3 ¹ /8	1 ²⁷ / ₃₂	1 ⁷ /8	7 ¹¹ / ₁₆	7/16	4.19
GPUELR3	¹ / ₂	6.8	²⁵ / ₃₂	10 ⁹ / ₁₆	3 ²⁵ / ₃₂	2 ⁵ / ₁₆	2 ⁹ / ₃₂	8 ¹⁵ / ₁₆	⁹ / ₁₆	6.99
GPUELR4	⁵ /8	10.3	²⁹ / ₃₂	13 ¹ / ₃₂	4 ³ / ₄	2 5/8	2 ⁷ /8	11 ¹ / ₁₆	²¹ / ₃₂	14.20
GPUELR5	3/4	16	1 ³ / ₃₂	14 7/8	5 ³ / ₁₆	3 ¹⁵ / ₃₂	3 7/32	12 ²⁹ / ₃₂	7/8	17.09

equipped with two needle roller thrust bearings to enable rotation under load

In mm

Material:Safety factor:

• Certification:

• Finish:

• Note:

partnumber	for chain diameter	working load limit	diameter	length outside	width outside	length inside	width inside	length	thickness	weight each
			а	b	с	d	е	f	g	
	mm	t	mm	mm	mm	mm	mm	mm	mm	kg
GPUELRO	6	1.4	11	150	56	33	32	126	6	0.61
GPUELR1	8	2.6	14	181	65	40	37	153	8	1.07
GPUELR2	10	4	18	226	79	47	48	195	11	1.9
GPUELR3	13	6.8	20	268	96	59	58	227	14	3.17
GPUELR4	16	10.3	23	331	121	67	73	281	17	6.44
GPUELR5	20	16	28	378	132	88	82	328	22	7.75

CAD

HOOKS

Applications

Hooks are used in lifting systems as a connection between the load to be lifted and the wire rope or chain slings. Grade 80 chain components are designed to be used in the assembly of grade 80 chain slings. Grade 100 chain components are designed to be used in the assembly of grade 100 chain slings. Lashing hooks are suitable for many different lashing purposes, but may never be used for lifting.

Range

Green Pin[®] offers a range of hooks, from drop-forged carbon steel eye hooks to drop forged alloy steel swivel hooks, which are quenched and tempered. Grade 80 chain components enable the assembly of a complete sling from the top master link to the hooks. The range extends from ${}^{3}/{}_{16}$ " to ${}^{1}/{}_{4}$ ". The range of grade 100 hooks extends from ${}^{7}/{}_{32}$ " to ${}^{3}/{}_{4}$ ". Van Beest offers a wide range of other hooks to complement the Green Pin[®] assortment.

Design

There are different types of hooks with specific designs to suit various purposes. Eye hooks and swivel hooks are designed to be used with wire rope or chain. Most types of hooks are supplied with a safety latch. Green Pin Tycan[®] hooks are designed to be used with Green Pin Tycan[®] Chain.

All types of hooks are generally marked with:

- manufacturer's symbol
 traceability code
 steel grade
 e.g. GP
 e.g. H-AB or HA
 e.g. 8 or 10
- size in mm and/or inch
- item code (specific products)
- origin
- e.g. 8 or 10
 e.g. 13 and/or ¹/₂"
 e.g. CSO
 e.g. France

Finish

Green Pin[®] hooks are painted. Grade 80 products were painted yellow or red under the Excel[®] brand. However, grade 80 hooks under the Green Pin[®] brand will be painted white. Grade 100 products are painted blue and will remain so.

Certification

Specific details of certificate availability can be found on each product page. Please verify your certification requirements at the time of order.

Instructions for use

Lifting hooks should be inspected before use to ensure that:

- all markings are legible;
- a hook with the correct WLL has been selected. Refer to the EN 818 standard for Chain Slings for further details;
- the latch is present;
- the latch is functional;
- the bolt, nut or any other locking system cannot vibrate out of position;
- the hook is never side-, tip- or back- loaded;
- our swivel hooks are equipped with a needle roller thrust bearing to enable rotation under load, excepted the s/s swivel hooks;
- the hook is supporting the load correctly;
- the latch should not be supporting any load;
- the hooks are free from nicks, gouges and cracks;
- items are not distorted or unduly worn.

Also:

- the hooks may not be heat treated as this may affect their WLL;
- never modify, repair or reshape a hook by machining, welding, heating or bending as this may affect the WLL;
- · all components of the sling must be of the same steel grade;
- items should be used for in-line lifting only.

Hooks must be regularly inspected in accordance with the safety standards given in the country of use. This is required because the products in use may be affected by issues such as wear, misuse, and overloading which may lead to deformation and alteration of the material structure. Inspection should take place at least every six months and more frequently when the hooks are used in severe operating conditions.

Green Pin[®] Sling Hook E EN 1677-2 GR8

Grade 80 eye sling hook EN 1677-2

- Material: alloy steel, grade 80, quenched and tempered
- Safety factor:
- or: MBL equals 4 x WLL ASTM A952/A952M-02 and EN 1677-2
- Standard: • Finish:
- painted yellow (J), red (R) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 * MPI * DGUV *
- Note:
- from 8.2 t without flat part
- makayumbay fayabala washing lanaka diamatay width thiskasa width diamatay width lana

partituttiber		working	lengin	ulameter	width	UNCKNESS	wiutii	ulameter	width	length	wiutti	CHICKHESS	weight
	diameter	load		inside	opening			eye	outside	outside			each
		limit		eye				outside					
			а	b	с	d	е	f	g	h	i	j	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPCSO5/6	³ / ₁₆ - ⁷ / ₃₂	1.12	3 ⁵ / ₁₆	²⁹ / ₃₂	1 ¹ / ₃₂	¹⁹ / ₃₂	²⁵ / ₃₂	1 11/16	2 ²⁷ / ₃₂	4 ¹ / ₂	¹³ / ₃₂	1/4	0.62
GPCSO7/8	¹ / ₄ - ⁵ / ₁₆	2	4 ¹ / ₁₆	1 ¹ / ₃₂	1 3/16	²⁵ / ₃₂	15/16	2	3 ⁷ / ₁₆	5 ¹⁵ / ₃₂	¹⁵ / ₃₂	5/16	1.23
GPCSO10	³ /8	3.2	5 ¹ / ₃₂	1 ³ /8	1 5/16	15/16	1 5/32	2 ⁹ / ₁₆	4 ³ / ₁₆	6 ²⁵ / ₃₂	¹⁹ / ₃₂	¹³ / ₃₂	2.40
GPCSO13	1/2	5.4	5 ³¹ / ₃₂	1 5/8	1 15/32	1 ¹ / ₄	1 17/32	3 ¹ / ₃₂	5 ¹ / ₄	8 7/32	²³ / ₃₂	15/32	4.37
GPCSO16	⁵ /8	8.2	7 ¹⁵ / ₃₂	2 ²/ ₁₆	1 23/32	1 ⁹ / ₁₆	1 23/32	3 11/16	6 ¹ / ₂	10 ¹ / ₃₂	13/16	⁵ /8	7.83
GPCSO18/20	3/4	12.8	9 ¹¹ / ₃₂	2 ³ /8	2 13/32	1 15/16	2 7/16	4 17/32	8 ³ / ₁₆	12 ⁷ /8	1 ³ / ₃₂	13/16	15.65
GPCSO22	⁷ /8	15.5	11 ¹ / ₃₂	2 27/32	2 15/16	2 ¹ / ₈	2 9/16	5 ³ / ₁₆	9 ¹⁷ / ₃₂	14 ³ / ₄	1 ³ / ₁₆	²⁹ / ₃₂	21.83
GPCSO26	1	21.6	10 5/32	2 ³ / ₄	2 7/8	2 ³ / ₄	2 15/16	5 ²¹ / ₃₂	9 ¹ / ₄	14 19/32	1 15/32	1 ¹⁵ / ₃₂	29.32
GPCSO32	1 ¹ / ₄	32.8	11 25/32	2 19/32	3 7/16	3 ³ / ₁₆	3 ¹ / ₂	5 ²⁹ / ₃₂	11 ¹ / ₁₆	16 15/16	$1^{21}/_{32}$	1 21/32	47.62

...

CAD

. .

* Excluding sizes 1 inch and 1 $^{\rm 1}/_{\rm 4}$ inch

In mm

partnumber	for chain	working	length	diameter	width	thickness	width	diameter	width	length	width	thickness	weight
	diameter	load		inside	opening			eye	outside	outside			each
		limit		eye				outside					
			а	b	с	d	е	f	g	h	i	j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPCSO5/6	5-6	1.12	84	23	26	15	20	43	72	114	10	6	0.28
GPCSO7/8	7 - 8	2	103	26	30	20	24	51	87	139	12	8	0.56
GPCSO10	10	3.2	128	35	33	24	29	65	106	172	15	10	1.09
GPCSO13	13	5.4	152	41	37	32	39	77	133	209	18	12	1.98
GPCSO16	16	8.2	190	52	44	40	44	94	165	255	21	16	3.55
GPCSO18/20	18 - 20	12.8	237	60	61	49	62	115	208	327	28	21	7.1
GPCSO22	22	15.5	280	72	75	54	65	132	242	375	30	23	9.9
GPCSO26	26	21.6	259	70	73	70	75	144	235	371	37	37	13.3
GPCSO32	32	32.8	299	66	87	78	89	150	281	430	42	42	21.6

* Excluding sizes 26 mm and 32 mm

CSO

CSC

Green Pin[®] Sling Hook CL EN 1677-2 GR8

Grade 80 clevis sling hook EN 1677-2

- Material:
 - alloy steel, grade 80, quenched and tempered
- Safety factor: MBL equals 4 x WLL • Standard:
 - ASTM A952/A952M-02 and EN 1677-2
 - painted yellow (J), red (R) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI b DGUV
- Note:

• Finish:

thickness width width width length weight partnumber | for chain | working length width width diameter

specific load pins available for $^{3}/_{16}\,$ inch, $^{9}/_{32}$ inch and $^{11}/_{32}$ inch hoist chains on request

	ulameter	loau			opening			outside	outside	outside
		limit								
			а	b	с	d	е	f	g	h
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch
GPCSC5	3/16	0.8	3	9/32	1 ¹ / ₃₂	¹⁹ / ₃₂	²⁵ / ₃₂	1 ³ / ₃₂	2 ²⁷ / ₃₂	4 ¹ / ₄
GPCSC6	7/32	1.12	2 ¹⁵ / ₁₆	9/32	1 ¹ / ₃₂	¹⁹ / ₃₂	²⁵ / ₃₂	1 ³ / ₃₂	2 ²⁷ / ₃₂	4 ¹ / ₄
GPCSC7/8	¹ / ₄ - ⁵ / ₁₆	2	3 ³ / ₄	11/32	1 ³ / ₁₆	²⁵ / ₃₂	¹⁵ / ₁₆	1 ¹ / ₄	3 7/16	5 ¹¹ / ₃₂
GPCSC10	³ /8	3.2	4 ⁷ / ₁₆	15/32	1 ⁵ / ₁₆	¹⁵ / ₁₆	1 ⁵ / ₃₂	1 ²¹ / ₃₂	4 ³ / ₁₆	6 ¹⁵ / ₃₂
GPCSC13	1/2	5.4	5 ⁷ / ₁₆	¹⁹ / ₃₂	1 ¹⁵ / ₃₂	1 ¹ / ₄	1 ¹⁷ / ₃₂	2 ¹ / ₈	5 ¹ / ₄	8 ³ / ₁₆
GPCSC16	⁵ /8	8.2	6 ¹¹ / ₃₂	3/4	1 ²³ / ₃₂	1 ⁹ / ₁₆	1 ²³ / ₃₂	2 ¹¹ / ₁₆	6 ¹ / ₂	9 ⁷ / ₁₆
GPCSC18/20	3/4	12.8	7 ²⁵ / ₃₂	²⁹ / ₃₂	2 ¹³ / ₃₂	1 ¹⁵ / ₁₆	2 7/16	3 ⁷ / ₃₂	8 ³ / ₁₆	12
GPCSC22	7/8	15.5	9 ⁹ / ₃₂	31/32	2 15/16	2 ¹ / ₈	2 ⁹ / ₁₆	3 ¹³ / ₁₆	9 ¹⁷ / ₃₂	13 25/32

In mm

partnumber	for chain	working	length	width	width	thickness	width	width	width	length	diameter	weight
	diameter	load			opening			outside	outside	outside	pin	each
		limit										
			а	b	с	d	е	f	g	h	i	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPCSC5	5	0.8	76	7	26	15	20	28	72	108	6	0.29
GPCSC6	6	1.12	75	7	26	15	20	28	72	108	8	0.29
GPCSC7/8	7 - 8	2	95	9	30	20	24	32	87	136	9	0.58
GPCSC10	10	3.2	113	12	33	24	29	42	106	164	13	1.1
GPCSC13	13	5.4	138	15	37	32	39	54	133	208	16	2.12
GPCSC16	16	8.2	161	19	44	40	44	68	165	240	20	3.67
GPCSC18/20	18 - 20	12.8	198	23	61	49	62	82	208	305	24	7.32
GPCSC22	22	15.5	236	25	75	54	65	97	242	350	28	10.63

CAD

3

each

0.64

0.64

1.28

2.43

4.67

8.09

16.14

23.44

pin

inch

 $1/_{4}$ 5/16

11/32

 $^{1}/_{2}$

5/8

²⁵/₃₂

 $^{15}/_{16}$

1 ³/₃₂

Green Pin® Sling Hook SE EN 1677-2 GR8

Grade 80 swivel sling hook EN 1677-2

- Material: alloy steel, grade 80, quenched and tempered
- Safety factor:
- MBL equals 4 x WLL ASTM A952/A952M-02 and EN 1677-2
- Standard: • Finish:
- painted yellow (J), red (R) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification:
 - 2.1 2.2 3.1 MPI ^b DGUV equipped with needle roller thrust bearing to enable rotation under load
- Note:

	diameter	load		inside	inside	opening			outside	outside			each
		limit											
			а	b	с	d	е	f	g	h		j	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPCSE5/6	³ / ₁₆ - ⁷ / ₃₂	1.12	3 ¹⁵ / ₁₆	1 5/16	1 ¹ / ₄	1 ¹ / ₃₂	¹⁹ / ₃₂	²⁵ / ₃₂	2 5/6	6 ¹⁵ / ₃₂	¹⁵ / ₃₂	1/4	1.21
GPCSE7/8	¹ / ₄ - ⁵ / ₁₆	2	4 ³¹ / ₃₂	1 17/32	1 15/32	1 ³ / ₁₆	²⁵ / ₃₂	¹⁵ / ₁₆	3 ³ / ₇	7 ⁷ /8	⁹ / ₁₆	1/3	2.20
GPCSE10	³ /8	3.2	6 ¹ / ₄	1 27/32	1 ⁷ /8	1 5/16	15/16	1 5/32	4 ³ / ₁₆	9 ²⁷ / ₃₂	⁵ /8	7/16	4.19
GPCSE13	1/2	5.4	7 ⁷ / ₁₆	2 5/16	2 ⁹ / ₃₂	1 15/32	1 ¹ / ₄	1 17/32	5 ¹ / ₄	12 ³ / ₃₂	13/16	⁹ / ₁₆	7.47
GPCSE16	⁵ /8	8.2	8 ¹ / ₂	2 11/16	2 ⁷ /8	1 23/32	1 9/16	1 23/32	6 ¹ / ₂	13 27/32	³¹ / ₃₂	²¹ / ₃₂	13.78
GPCSE18/20	3/4	12.8	10 11/32	3 ⁷ / ₁₆	3 7/32	2 13/32	1 15/16	2 7/16	8 ³ / ₁₆	17 7/32	³¹ / ₃₂	7/8	23.15

In mm

partnumber	for chain	working	length	length	width	width	thickness	width	width	length	diameter	thickness	weight
	diameter	load limit		inside	inside	opening			outside	outside			each
			a	b	с	d	e	f	g	h	i	j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPCSE5/6	5 - 6	1.12	100	33	32	26	15	20	72	164	12	6	0.55
GPCSE7/8	7 - 8	2	126	39	37	30	20	24	87	200	14	8	1
GPCSE10	10	3.2	159	47	48	33	24	29	106	250	16	11	1.9
GPCSE13	13	5.4	189	59	58	37	32	39	133	307	21	14	3.39
GPCSE16	16	8.2	216	68	73	44	40	44	165	352	25	17	6.25
GPCSE18/20	18 - 20	12.8	263	87	82	61	49	62	208	437	25	22	10.5

CAD

CSE

Green Pin® Sling Hook SCL EN 1677-2 GR8

Grade 80 swivel sling hook with clevis EN 1677-2

CSECA

- Safety factor: MBL equals 4 x WLL
 - ASTM A952/A952M-02 and EN 1677-2
 - painted yellow (J), red (R) or white
- Finish: • Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification:

2.1 2.2 3.1 MPI ^b DGUV

Note:

• Standard:

equipped with needle roller thrust bearing to enable rotation under load and specific load pins available for 3/16 inch, 9/32 inch and 11/32 inch hoist chains on request

partnumber	for chain	working	length	width	width	thickness	width	width	width	length	diameter	weight
	ulameter	limit			opening			outside	outside		pin	cacii
			а	b	с	d	е	f	g	h	i	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPCSECA5	3/16	0.8	4 ³¹ / ₃₂	⁹ / ₃₂	1 ¹ / ₃₂	19/32	²⁵ / ₃₂	2 ⁷ / ₃₂	2 ²⁷ / ₃₂	6 ¹ / ₄	¹ / ₄	1.23
GPCSECA6	⁷ / ₃₂	1.12	4 ²⁹ / ₃₂	⁹ / ₃₂	1 ¹ / ₃₂	19/32	²⁵ / ₃₂	2 ⁷ / ₃₂	2 ²⁷ / ₃₂	6 ¹ / ₄	5/16	1.23
GPCSECA7/8	¹ / ₄ - ⁵ / ₁₆	2	6 ¹ / ₃₂	¹¹ / ₃₂	1 ³ / ₁₆	²⁵ / ₃₂	15/16	2 ⁹ / ₁₆	3 7/16	7 ⁵ /8	¹¹ / ₃₂	2.18
GPCSECA10	³ /8	3.2	7 ¹³ / ₃₂	¹⁵ / ₃₂	1 5/16	15/16	1 ⁵ / ₃₂	3 ¹ / ₈	4 ³ / ₁₆	9 ⁷ / ₁₆	1/2	4.30
GPCSECA13	1/2	5.4	8 ¹³ / ₁₆	¹⁹ / ₃₂	1 15/32	1 ¹ / ₄	1 17/32	3 ²⁵ / ₃₂	5 ¹ / ₄	11 9/16	⁵ /8	7.80
GPCSECA16	⁵ /8	8.2	10 5/8	3/4	1 ²³ / ₃₂	1 ⁹ / ₁₆	1 ²³ / ₃₂	4 ³ / ₄	6 ¹ / ₂	13 25/32	²⁵ / ₃₂	14.57

partnumber	for chain diameter	working load limit	length	width	width opening	thickness	width	width outside	width outside	length	diameter pin	weight each
			а	b	с	d	е	f	g	h	i	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPCSECA5	5	0.8	126	7	26	15	20	56	72	159	6	0.56
GPCSECA6	6	1.12	125	7	26	15	20	56	72	159	8	0.56
GPCSECA7/8	7/8	2	153	9	30	20	24	65	87	194	9	0.99
GPCSECA10	10	3.2	188	12	33	24	29	79	106	240	13	1.95
GPCSECA13	13	5.4	224	15	37	32	39	96	133	294	16	3.54
GPCSECA16	16	8.2	270	19	44	40	44	121	165	350	20	6.61

CAD

Green Pin[®] Self Locking Hook E EN 1677-3 GR8

Grade 80 eye self locking hook EN 1677-3

- Material: alloy steel, grade 80, quenched and tempered
- Safety factor: MBL equals 4 x WLL
- Standard:
- ASTM A952/A952M-02 and EN 1677-3
- Finish:
- painted yellow (J), red (R) or white • Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI b DGUV
- Note:
- from 12.8 t without flat part

XLO		
j t	-	
a	h	

partnumber	for chain diameter	working load	length	diameter inside	width opening	thickness	width	width outside	width outside	length	width	thickness	weight each
		limit		eye									
			а	b		d	е	f	g	h		j	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPXLO0	³ / ₁₆ - ⁷ / ₃₂	1.12	4 ³ / ₈	¹⁵ / ₁₆	1 ¹ / ₄	⁵ /8	1 ¹ / ₃₂	1 ²⁷ / ₃₂	3 ¹ / ₃₂	5 ²⁵ / ₃₂	⁷ / ₁₆	⁹ / ₃₂	1.12
GPXLO1	¹ / ₄ - ⁵ / ₁₆	2	5 ⁹ / ₃₂	1 5/32	1 11/16	²⁹ / ₃₂	1 5/32	2 ¹ / ₄	3 ⁵ /8	6 ¹⁵ / ₁₆	⁹ / ₁₆	⁹ / ₃₂	2.01
GPXLO2	3/8	3.2	6 ⁵ / ₈	1 ³ /8	1 27/32	1 ¹ / ₄	1 ³ /8	2 23/32	4 ³ / ₈	8 ⁵ / ₈	²¹ / ₃₂	13/32	3.95
GPXLO3	1/2	5.4	7 ²⁷ / ₃₂	1 13/16	2 13/32	1 ¹⁵ / ₃₂	1 25/32	3 ⁷ / ₁₆	5 ¹⁹ / ₃₂	10 13/32	²⁵ / ₃₂	1/2	7.41
GPXLO4	⁵ /8	8.2	9 ²³ / ₃₂	2 ⁵ / ₁₆	2 ²⁹ / ₃₂	1 11/16	2 ⁷ / ₃₂	4 ³ / ₈	7 ⁹ / ₃₂	12 29/32	1 ¹ / ₃₂	⁵ /8	15.43
GPXLO5	3/4	12.8	11 ³ / ₃₂	2 23/32	3 15/32	2	2 15/32	4 31/32	8 5/32	14 23/32	1 ³ / ₃₂	²⁵ / ₃₂	20.33

In mm

partnumber	for chain	working	length	diameter	width	thickness	width	width	width	length	width	thickness	weight
	diameter	load		inside	opening			outside	outside				each
		limit		eye									
			a	b	с	d	е	f	g	h	i	j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPXLO0	5 - 6	1.12	111	24	32	16	26	47	77	147	11	7	0.51
GPXLO1	7 - 8	2	134	29	43	23	29	57	92	176	14	7	0.91
GPXLO2	10	3.2	168	35	47	32	35	69	111	219	17	10	1.79
GPXLO3	13	5.4	199	46	61	37	45	87	142	264	20	13	3.36
GPXLO4	16	8.2	247	59	74	43	56	111	185	328	26	16	7
GPXLO5	18 - 20	12.8	282	69	88	51	63	126	207	374	28	20	9.22

CAD

3

Green Pin[®] Self Locking Hook EN 1677-3 CL GR8

alloy steel, grade 80, quenched and tempered

ASTM A952/A952M-02 and EN 1677-3

painted yellow (J), red (R) or white

Grade 80 clevis self locking hook EN 1677-3

MBL equals 4 x WLL

• Temperature range: -40°F up to +392°F (-40°C up to +200°C)

2.1 2.2 3.1 MPI b DGUV

XLC

	diameter	load			opening			outside	outside		pin	each
		limit										
			а	b	с	d	е	f	g	h	i	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPXLC05	3/16	0.8	3 ⁵ /8	9/32	1 ¹ / ₄	⁵ /8	1 ¹ / ₃₂	1 ³ / ₃₂	3 ¹ / ₃₂	5 ⁵ / ₃₂	1/4	1.08
GPXLC0	7/32	1.12	3 ⁵ /8	⁹ / ₃₂	1 ¹ / ₄	5/8	1 ¹ / ₃₂	1 ³ / ₃₂	3 ¹ / ₃₂	5 ⁵ / ₃₂	⁵ / ₁₆	1.08
GPXLC1	¹ / ₄ - ⁵ / ₁₆	2	4 ⁹ / ₁₆	11/32	1 ¹¹ / ₁₆	²⁹ / ₃₂	1 ⁵ / ₃₂	1 ¹ / ₄	3 ⁵ /8	6 ¹¹ / ₃₂	¹¹ / ₃₂	2.01
GPXLC2	3/8	3.2	5 ⁵ /8	¹⁵ / ₃₂	1 ²⁷ / ₃₂	1 ¹ / ₄	1 ³ /8	1 ²¹ / ₃₂	4 ³ /8	7 7/8	1/2	3.90
GPXLC3	1/2	5.4	6 ⁹ / ₁₆	¹⁹ / ₃₂	2 ¹³ / ₃₂	1 ¹⁵ / ₃₂	1 ²⁵ / ₃₂	2 ¹ / ₈	5 ¹⁹ / ₃₂	9 ¹⁷ / ₃₂	⁵ /8	7.34
GPXLC4	5/8	8.2	7 ²⁹ / ₃₂	3/4	2 ²⁹ / ₃₂	1 ¹¹ / ₁₆	2 7/32	2 ¹¹ / ₁₆	7 ⁹ / ₃₂	11 17/32	25/32	14.88
GPXLC5	3/4	12.8	9 ¹ / ₈	²⁹ / ₃₂	3 ¹⁵ / ₃₂	2	2 ¹⁵ / ₃₂	3 ⁷ / ₃₂	8 ⁵ / ₃₂	13 ⁷ / ₁₆	15/16	21.10
	· · · · · · · · · · · · · · · · · · ·						~	·		·		·

partnumber for chain working length width width thickness width width length diameter weight

specific load pins available for ${}^{3}/_{16}$ inch, ${}^{9}/_{32}$ inch and ${}^{11}/_{32}$ inch hoist chains on request

In mm

• Material:

• Standard:

• Finish:

Note:

Safety factor:

• Certification:

partnumber	for chain diameter	working load limit	length	width	width opening	thickness	width	width outside	width outside	length	diameter pin	weight each
			а	b	с	d	е	f	g	h	i	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPXLC05	5	0.8	92	7	32	16	26	28	77	131	6	0.49
GPXLC0	6	1.12	92	7	32	16	26	28	77	131	8	0.49
GPXLC1	7-8	2	116	9	43	23	29	32	92	161	9	0.91
GPXLC2	10	3.2	143	12	47	32	35	42	111	200	13	1.77
GPXLC3	13	5.4	167	15	61	37	45	54	142	242	16	3.33
GPXLC4	16	8.2	201	19	74	43	56	68	185	293	20	6.75
GPXLC5	18 - 20	12.8	232	23	88	51	63	82	207	341	24	9.57

CAD

Green Pin® Self Locking Hook S EN 1677-3 GR8

Grade 80 swivel self locking hook EN 1677-3

- Material: alloy steel, grade 80, quenched and tempered
- Safety factor: MBL equals 4 x WLL
- Standard: ASTM A952/A952M-02 and EN 1677-3
- Finish:
- painted yellow (J), red (R) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI DGUV
- Note:

partnumber for chain working length length width width thickness width width length diameter thickness w

equipped with needle roller thrust bearing to enable rotation under load

partitumber	diameter	load limit	tengtri	inside	inside	opening	thethess	width	outside	length		cinexites5	each
			а	b	с	d	е	f	g	h	i	j	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPXLE0	³ / ₁₆ - ⁷ / ₃₂	1.12	4 ¹³ / ₁₆	1 ¹ / ₄	1 ¹ / ₄	1 ¹ / ₄	5/8	1 ¹ / ₃₂	3 ¹ / ₃₂	7 ⁹ / ₁₆	15/32	1/4	1.72
GPXLE1	¹ / ₄ - ⁵ / ₁₆	2	5 ¹³ / ₁₆	1 17/32	1 15/32	1 11/16	²⁹ / ₃₂	1 ⁵ / ₃₂	3 ⁵ /8	9 ³ / ₃₂	⁹ / ₁₆	⁵ / ₁₆	3.06
GPXLE2	³ /8	3.2	7 ⁷ / ₃₂	1 13/16	1 ⁷ /8	1 27/32	1 ¹ / ₄	1 ³ /8	4 ³ / ₈	11 ³ / ₃₂	⁵ /8	7/16	5.64
GPXLE3	1/2	5.4	8 7/16	2 ¹ / ₄	2 ⁹ / ₃₂	2 13/32	1 ¹⁵ / ₃₂	1 25/32	5 ¹⁹ / ₃₂	13 7/32	13/16	⁹ / ₁₆	10.05
GPXLE4	⁵ /8	8.2	10 19/32	2 ⁹ / ₁₆	2 7/8	2 ²⁹ / ₃₂	1 17/32	2 ⁷ / ₃₂	7 ⁹ / ₃₂	16 ³ /8	31/32	²¹ / ₃₂	20.66
GPXLE5	3/4	12.8	11 15/16	3 ⁷ / ₁₆	3 ⁷ / ₃₂	3 15/32	2	2 15/32	8 5/32	18 29/32	31/32	7/8	28.00

In mm

partnumber	for chain diameter	working load	length	length inside	width inside	width opening	thickness	width	width outside	length	diameter	thickness	weight each
			а	b	с	d	е	f	g	h	i	j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPXLE0	5 - 6	1.12	122	32	32	32	16	26	77	192	12	6	0.78
GPXLE1	7-8	2	148	39	37	43	23	29	92	231	14	8	1.39
GPXLE2	10	3.2	183	46	48	47	32	35	111	282	16	11	2.56
GPXLE3	13	5.4	214	57	58	61	37	45	142	336	21	14	4.56
GPXLE4	16	8.2	269	65	73	74	39	56	185	416	25	17	9.37
GPXLE5	18 - 20	12.8	303	87	82	88	51	63	207	480	25	22	12.7

CAD

XLBA

Green Pin® Self Locking Hook SCL EN 1677-3 GR8

Grade 80 swivel clevis self locking hook EN 1677-3

- alloy steel, grade 80, quenched and tempered
- Material: Safety factor:
 - MBL equals 4 x WLL
 - ASTM A952/A952M-02 and EN 1677-3
 - painted red (R) or white
- Finish: • Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification:
- Note:

• Standard:

2.1 2.2 3.1 MPI b DGUV equipped with needle roller thrust bearing to enable rotation under load and

specific load pins available for 3/16 inch, 9/32 inch and 11/32 inch hoist chains on request

partnumber	for chain	working	length	width	width	thickness	width	width	width	length	diameter	weight
	diameter	load			opening			outside	outside		pin	each
		limit										
			а	b	с	d	е	f	g	h	i	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPXLBA05	3/16	0.8	5 ¹³ / ₁₆	⁹ / ₃₂	1 ¹ / ₄	21/32	1 ¹ / ₁₆	2 ⁷ / ₃₂	3 ¹ / ₃₂	7 13/32	1/4	1.54
GPXLBA0	⁷ / ₃₂	1.12	5 ¹³ / ₁₆	⁹ / ₃₂	1 ¹ / ₄	21/32	1 ¹ / ₁₆	2 ⁷ / ₃₂	3 ¹ / ₃₂	7 13/32	5/16	1.76
GPXLBA1	¹ / ₄ - ⁵ / ₁₆	2	6 ¹⁵ / ₁₆	¹¹ / ₃₂	1 11/16	15/16	1 ⁷ / ₃₂	2 ⁹ / ₁₆	3 ⁵ /8	8 11/16	11/32	3.09
GPXLBA2	³ /8	3.2	8 7/16	7/16	1 ²⁷ / ₃₂	1 ¹ / ₄	1 15/32	3 ¹ / ₈	4 ³ / ₈	10 21/32	1/2	5.73
GPXLBA3	¹ / ₂	5.4	9 ²⁷ / ₃₂	¹⁹ / ₃₂	2 13/32	1 ¹⁵ / ₃₂	1 27/32	3 ²⁵ / ₃₂	5 ¹⁹ / ₃₂	12 25/32	⁵ /8	10.36
GPXLBA4	⁵ /8	8.2	12 ⁹ / ₁₆	23/32	2 ²⁹ / ₃₂	1 11/16	2 ⁵ /8	4 ³ / ₄	7 ⁹ / ₃₂	16 3/16	25/32	21.61

In mm

partnumber	for chain	working	length	width	width	thickness	width	width	width	length	diameter	weight
	diameter	load			opening			outside	outside		pin	each
		limit										
			a	b	с	d	е	f	g	h	i	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPXLBA05	5	0.8	148	7	32	17	27	56	77	188	6	0.7
GPXLBA0	6	1.12	148	7	32	17	27	56	77	188	8	0.8
GPXLBA1	7 - 8	2	176	9	43	24	31	65	92	221	9	1.4
GPXLBA2	10	3.2	214	12	47	32	37	79	111	271	13	2.6
GPXLBA3	13	5.4	250	15	61	37	47	96	142	325	16	4.7
GPXLBA4	16	8.2	319	19	74	43	67	121	185	411	20	9.8

CAD

Green Pin[®] Grab Hook E EN 1677-1 GR8

Grade 80 eye grab hook EN 1677-1

- Material: alloy steel, grade 80, quenched and tempered
- Safety factor:Standard:
- MBL equals 4 x WLL
 - ASTM A952/A952M-02 and EN 1677-1
- Finish:
- painted yellow (J), red (R) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 * MPI * DGUV *
- CRO

	diameter	load		length	width				outside	outside			each
		limit		eye	eye								
			а	b	с	d	е	f	g	h		j	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPCRO6	⁷ / ₃₂	1.12	1 ⁵ /8	15/16	²⁹ / ₃₂	⁵ / ₁₆	15/16	²⁵ / ₃₂	1 ²¹ / ₃₂	3 ¹¹ / ₁₆	¹¹ / ₃₂	1/4	0.55
GPCRO7/8	¹ / ₄ - ⁵ / ₁₆	2	2 ³ / ₃₂	1 ¹ / ₁₆	1 ¹ / ₃₂	¹³ / ₃₂	1 5/16	²⁹ / ₃₂	2 ³ / ₃₂	4 ¹⁷ / ₃₂	¹³ / ₃₂	⁵ / ₁₆	0.99
GPCRO10	³ /8	3.2	2 ⁹ / ₁₆	1 ¹ / ₂	1 13/32	¹⁵ / ₃₂	1 ⁹ / ₁₆	1 5/32	2 ¹⁹ / ₃₂	5 ³ / ₄	⁹ / ₁₆	¹³ / ₃₂	2.01
GPCRO13	1/2	5.4	3 ⁹ / ₃₂	1 21/32	1 ⁵ /8	¹⁹ / ₃₂	2 ⁷ / ₃₂	1 9/16	3 ¹⁵ / ₃₂	7 ⁷ / ₃₂	⁵ /8	¹⁵ / ₃₂	4.39
GPCRO16	⁵ /8	8.2	4 ¹ / ₁₆	1 ²³ / ₃₂	1 ⁵ /8	23/32	2 ¹⁹ / ₃₂	1 ¹¹ / ₁₆	3 ²⁵ / ₃₂	8 5/16	²⁵ / ₃₂	²⁵ / ₃₂	5.49
GPCRO20	3/4	12.8	5 ¹ / ₈	1 ¹⁵ / ₃₂	1 ¹⁵ / ₃₂	7/8	2 ¹⁵ / ₁₆	1 ⁷ /8	5 ¹ / ₃₂	9 ¹ / ₂	1 ¹ / ₃₂	1 ¹ / ₃₂	9.48
GPCRO22	7/ ₈	15.5	4 23/32	1 ²³ / ₃₂	1 ²³ / ₃₂	³¹ / ₃₂	3 ¹ / ₃₂	2 ¹ / ₄	5 ³ / ₁₆	9 ²³ / ₃₂	1 ¹ / ₃₂	1 ¹ / ₃₂	18.74
GPCRO26	1	21.6	6 ⁷ / ₃₂	1 13/16	1 13/16	1 ³ / ₁₆	3 ¹⁵ / ₁₆	3 ⁷ / ₃₂	6 ³¹ / ₃₂	12 19/32	1 ¹ / ₄	1 ¹ / ₄	32.41
GPCRO32	1 ¹ / ₄	32.8	8 ⁹ / ₃₂	2 ¹ / ₄	2 ¹ / ₄	1 ¹ / ₂	3 ¹⁹ / ₃₂	3 ¹⁵ / ₃₂	8 15/32	15 ⁹ / ₁₆	1 17/32	1 ¹⁷ / ₃₂	39.68

partnumber for chain working length inside inside opening thickness width width length width thickness weight

* Excluding sizes $^{3}/_{4}$ inch, $^{7}/_{8}$ inch, 1 inch and 1 $^{1}/_{4}$ inch

In mm

partnumber	for chain	working	length	inside	inside	opening	thickness	width	width	length	width	thickness	weight
	diameter	load		length	width				outside	outside			each
		limit		eye	eye								
			а	b	с	d	е	f	g	h		j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPCRO6	6	1.12	41	24	23	8	24	20	42	94	9	6	0.25
GPCRO7/8	7 - 8	2	53	27	26	10	33	23	53	115	10	8	0.45
GPCRO10	10	3.2	65	38	36	12	40	29	66	146	14	10	0.91
GPCRO13	13	5.4	83	42	41	15	56	40	88	183	16	12	1.99
GPCRO16	16	8.2	103	44	41	18	66	43	96	211	20	20	2.49
GPCRO20	20	12.8	130	37	37	22	75	48	128	241	26	26	4.3
GPCRO22	22	15.5	120	44	44	25	77	57	132	247	26	26	8.5
GPCRO26	26	21.6	158	46	46	30	100	82	177	320	32	32	14.7
GPCRO32	32	32.8	210	57	57	38	91	88	215	395	39	39	18

* Excluding sizes 20 mm, 22 mm, 26 mm and 32 mm

CAD

3

Green Pin® Grab Hook CL EN 1677-1 GR8

Grade 80 clevis grab hook EN 1677-1

- Material:Safety factor:
- alloy steel, grade 80, quenched and tempered tor: MBL equals 4 x WLL
- Safety factor: MBL equals 4
 Standard: ASTM A952/A
 - ASTM A952/A952M-02 and EN 1677-1
- Finish: painted yellow (J), red (R) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)

narthumhar for chain working longth

• Certification: 2.1 2.2 3.1 MPI ^b

partitumber	diameter	load limit	tengtii	width	outside	opening	thethess	width	outside	outside	pin	each
			а	b	с	d	е	f	g	h	i	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPCRC6	⁷ / ₃₂	1.12	2 ² / ₁₆	⁹ / ₃₂	1 ³ / ₃₂	⁹ / ₃₂	¹⁵ / ₁₆	3/4	1 21/32	3 ³ /8	5/16	0.62
GPCRC7/8	¹ / ₄ - ⁵ / ₁₆	2	2 17/32	¹¹ / ₃₂	1 ¹ / ₄	¹³ / ₃₂	1 5/16	²⁹ / ₃₂	2 ³ / ₃₂	4 ³ / ₃₂	11/32	0.99
GPCRC10	³ /8	3.2	2 15/16	¹⁵ / ₃₂	1 21/32	¹⁵ / ₃₂	1 ⁹ / ₁₆	1 ⁵ / ₃₂	2 ¹⁹ / ₃₂	5	1/2	1.94
GPCRC13	1/2	5.4	4 ¹ / ₁₆	19/32	2 ¹ / ₈	¹⁹ / ₃₂	2 7/32	1 ⁹ / ₁₆	3 ¹⁵ / ₃₂	6 ¹³ / ₁₆	5/8	4.78
GPCRC16	⁵ /8	8.2	5	3/4	2 11/16	²³ / ₃₂	2 ⁹ / ₁₆	1 11/16	3 25/32	8 ³ / ₁₆	²⁵ / ₃₂	6.19

width width oppning this was width width longth dismotor weigh

In mm

partnumber	for chain diameter	working load limit	length	width	width outside	opening	thickness	width	width outside	length outside	diameter pin	weight each
			a	b	с	d	е	f	g	h	i	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPCRC6	6	1.12	52	7	28	7	24	19	42	86	8	0.28
GPCRC7/8	7 - 8	2	64	9	32	10	33	23	53	104	9	0.45
GPCRC10	10	3.2	75	12	42	12	40	29	66	127	13	0.88
GPCRC13	13	5.4	103	15	54	15	56	40	88	173	16	2.17
GPCRC16	16	8.2	127	19	68	18	65	43	96	208	20	2.81

CAD

Green Pin® Excavator Hook GR8

Grade 80 excavator hook

- Material: alloy steel, grade 80, quenched and tempered
- Safety factor: MBL equals 4 x WLL • Finish:
 - painted yellow (J) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI ^b CE
- Note:

welding must be done in accordance with DIN 5817 resp. 15429, by a qualified welder according to EN 287-1

	GH	
fb		
		e
	a	

n n

partnumber	working	width	length	width	thickness	width	length	width	width	weight
	load			opening						each
	limit									
		а	b	с	d	е	f	g	h	
	t	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPGH1	1	2 ²⁷ / ₃₂	3 ³ / ₁₆	31/32	3/4	1 ³ / ₃₂	4 ¹ / ₄	1 ⁷ / ₃₂	1 ¹ / ₃₂	1.15
GPGH2	2	3 ¹⁹ / ₃₂	3 ⁹ / ₃₂	1 5/16	²⁵ / ₃₂	1 ³ / ₃₂	4 ⁷ / ₁₆	1 ⁷ / ₃₂	1 ¹¹ / ₃₂	1.54
GPGH3	3	4 ¹ / ₈	4 ¹ / ₈	1 5/16	1 ¹ / ₃₂	1 ¹ / ₄	5 ³ / ₃₂	1 ⁷ / ₃₂	1 ¹¹ / ₃₂	2.54
GPGH4	4	4 ³ / ₄	5 ¹ /8	1 ³ /8	1 ¹ / ₁₆	1 ¹⁵ / ₃₂	5 ¹³ / ₁₆	1 ⁵ /8	1 ¹ / ₂	3.66
GPGH5	5	5 ⁷ / ₁₆	5 ⁷ /8	1 11/16	1 ³ / ₃₂	1 ²⁵ / ₃₂	6 ⁹ / ₁₆	1 ⁵ /8	1 ²³ / ₃₂	5.20
GPGH8	8	5 ²³ / ₃₂	5 ¹³ / ₁₆	1 11/16	1 ⁵ /8	2 ² / ₁₆	6 13/16	1 ⁵ /8	2	7.32
GPGH10	10	7	7 ³ / ₄	2 ³ /8	1 ¹³ / ₁₆	2 13/32	8 15/16	1 31/32	2 ¹⁹ / ₃₂	14.20
GPGH15	15	7 ⁹ / ₃₂	8 ²⁵ / ₃₂	2 ⁹ / ₁₆	2 ³ /8	2 ³ / ₄	9 ⁷ /8	2 ⁵ / ₃₂	3 5/32	21.38

In	mm	

partnumber	working load	width	length	width opening	thickness	width	length	width	width	weight each
	limit									
		а	b	с	d	е	f	g	h	
	t	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPGH1	1	72	78	25	19	28	108	31	26	0.52
GPGH2	2	91	83	33	20	28	113	31	34	0.7
GPGH3	3	105	105	33	26	32	129	31	34	1.15
GPGH4	4	121	130	35	27	37	148	41	38	1.66
GPGH5	5	138	149	43	28	45	167	41	44	2.36
GPGH8	8	145	148	43	41	52	173	41	51	3.32
GPGH10	10	178	197	60	46	61	227	50	66	6.44
GPGH15	15	185	223	65	60	70	251	55	80	9.7

CAD INFO

3

Green Pin'

Green Pin[®] Foundry Hook E GR8

Grade 80 eye foundry hook

- Material:
- alloy steel, grade 80, quenched and tempered
- Safety factor: MBL equals 4 x WLL
- Standard: ASTM A952/A952M-02 • Finish:
 - painted yellow (J), red (R) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 * MPI • * DGUV *
- Note:

from 8.2 t without flat part

f D D T		F
	a	h
	е	
d g		

CFO

partnumber	for chain	working	length	diameter	width	thickness	width	diameter	width	length	thickness	weight
	diameter	load		eye	opening			eye	outside			each
		limit		inside				outside				
			а	b		d	е	f	g	h	i	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPCFO6	⁷ / ₃₂	1.12	3 ²¹ / ₃₂	23/32	1 27/32	²¹ / ₃₂	7/8	1 ¹ / ₂	3 13/16	4 29/32	⁹ / ₃₂	0.73
GPCFO7/8	¹ / ₄ - ⁵ / ₁₆	2	4 ⁷ / ₈	15/16	2 15/32	⁷ /8	1 ³ / ₁₆	2	5 ³ / ₃₂	6 17/32	¹¹ / ₃₂	1.72
GPCFO10	³ /8	3.2	6 ³ / ₁₆	1 5/16	3 ¹ / ₈	1 ³ / ₃₂	1 13/32	2 ¹⁹ / ₃₂	6 5/16	8 ³ / ₁₆	7/16	3.31
GPCFO13	1/2	5.4	7 ¹⁵ / ₃₂	1 ²³ / ₃₂	3 ²¹ / ₃₂	1 13/32	1 13/16	3 ¹¹ / ₃₂	7 25/32	10 3/32	⁹ / ₁₆	6.61
GPCFO16	⁵ /8	8.2	8 ¹ / ₁₆	1 ³ / ₈	3 ³ / ₄	1 ²⁵ / ₃₂	2 ²/ ₁₆	3 ¹⁵ / ₃₂	8 ¹ / ₃₂	11 ³ / ₁₆	15/16	9.26
CFO18/20	3/4	12.8	9 ¹ / ₄	1 ⁹ / ₁₆	4 ³ / ₈	2 ³ / ₃₂	2 5/32	3 5/8	8 31/32	12 ¹³ / ₃₂	³¹ / ₃₂	17.20
GPCFO22	7/8	15.5	10 7/16	1 ¹³ / ₁₆	4 27/32	2 ¹⁹ / ₃₂	2 25/32	4 ¹¹ / ₃₂	10 5/32	10 9/16	1 ¹ / ₄	21.83
GPCFO26	1	21.6	12	2 ¹ / ₈	5 ¹ / ₄	2 ⁹ / ₁₆	3 ³ / ₁₆	4 23/32	10 29/32	16 17/32	1 5/16	30.42
GPCFO32	1 ¹ / ₄	32.8	12 ⁷ /8	2 ³ /8	6 ³ / ₃₂	3 ⁵ / ₁₆	3 ²⁵ / ₃₂	5 ⁵ / ₃₂	13 ¹ / ₈	18 ¹ / ₁₆	1 ³ /8	54.01
											· · · · · · · · · · · · · · · · · · ·	

* Excluding sizes $^{5}\!/_{8}$ inch, $^{3}\!/_{4}$ inch, $^{7}\!/_{8}$ inch, 1 inch and 1 $^{1}\!/_{4}$ inch

In mm

partnumber	for chain	working	length	diameter	width	thickness	width	diameter	width	length	thickness	weight
	diameter	load		eye	opening			eye	outside			each
		limit		inside				outside				
			а	b		d	е	f	g	h	i	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPCFO6	6	1.12	93	18	47	17	22	38	97	125	7	0.33
GPCFO7/8	7 - 8	2	124	24	63	22	30	51	129	166	9	0.78
GPCFO10	10	3.2	157	33	79	28	36	66	160	208	11	1.5
GPCFO13	13	5.4	190	44	93	36	46	85	198	256	14	3
GPCFO16	16	8.2	205	35	95	45	52	88	204	284	24	4.2
CFO18/20	18 - 20	12.8	235	40	111	53	55	92	228	315	25	7.8
GPCFO22	22	15.5	265	46	123	66	71	110	258	268	32	9.9
GPCFO26	26	21.6	305	54	133	65	81	120	277	420	33	13.8
GPCFO32	32	32.8	327	60	155	84	96	131	333	459	35	24.5

* Excluding sizes 16 mm, 18-20 mm, 22 mm, 26 mm and 32 mm

CAD

Green Pin[®] Sling Hook E GR10

Grade 100 eye sling hook

- 8
- Material: alloy steel, grade 100, quenched and tempered
- Safety factor: MBL equals 4 x WLL
 Standard: ASTM A952/A952M-02 ai
 - ASTM A952/A952M-02 and the grade 100 chain fittings range design follows the EN1677 with values for grade 100
- Finish: painted blue
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI ^b DGUV
- Note:

from 10 t without flat part

ucso

partnumber	for chain	working	tength	alameter	wiath	thickness	wiath	diameter	wiath	tength	wiath	thickness	weight
	diameter	load		inside	opening			eye	outside				each
		limit		eye				outside					
			а	b		d	е	f	g	h		j	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPUCSO6	7/32	1.4	3 5/16	²⁹ / ₃₂	1 ¹ / ₃₂	¹⁹ / ₃₂	²⁵ / ₃₂	1 11/16	2 27/32	4 ¹ / ₂	¹³ / ₃₂	1/4	0.62
GPUCSO8	⁹ / ₃₂ - ⁵ / ₁₆	2.6	4 ¹ / ₁₆	1 ¹ / ₃₂	1 ³ / ₁₆	²⁵ / ₃₂	15/16	2	3 ⁷ / ₁₆	5 ¹⁵ / ₃₂	¹⁵ / ₃₂	⁵ / ₁₆	1.15
GPUCSO10	3/8	4	5 ¹ / ₃₂	1 ³ /8	1 ⁵ / ₁₆	¹⁵ / ₁₆	1 5/32	2 ⁹ / ₁₆	4 ³ / ₁₆	6 ²⁵ / ₃₂	¹⁹ / ₃₂	¹³ / ₃₂	2.40
GPUCSO13	1/2	6.8	5 ³¹ / ₃₂	1 ⁵ /8	1 ¹⁵ / ₃₂	1 ¹ / ₄	1 17/32	3 ¹ / ₃₂	5 ¹ / ₄	8 ⁷ / ₃₂	23/32	¹⁵ / ₃₂	4.28
GPUCSO16	⁵ /8	10.3	7 15/32	2 ² / ₁₆	1 ²³ / ₃₂	1 ⁹ / ₁₆	1 ²³ / ₃₂	3 11/16	6 ¹ / ₂	10 ¹ / ₃₂	¹³ / ₁₆	⁵ /8	7.74
GPUCSO20	3/4	16	9 ¹¹ / ₃₂	2 ³ /8	2 ¹³ / ₃₂	1 15/16	2 7/16	4 17/32	8 ³ / ₁₆	12 7/8	1 ³ / ₃₂	¹³ / ₁₆	15.65

In mm

partnumber	for chain	working	length	diameter	width	thickness	width	diameter	width	length	width	thickness	weight
	diameter	load		Inside	opening			eye	outside				each
		limit		eye				outside					
			а	b	с	d	е	f	g	h	i	j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPUCSO6	6	1.4	84	23	26	15	20	43	72	114	10	6	0.28
GPUCSO8	8	2.6	103	26	30	20	24	51	87	139	12	8	0.52
GPUCSO10	10	4	128	35	33	24	29	65	106	172	15	10	1.09
GPUCSO13	13	6.8	152	41	37	32	39	77	133	209	18	12	1.94
GPUCSO16	16	10.3	190	52	44	40	44	94	165	255	21	16	3.51
GPUCSO20	20	16	237	60	61	49	62	115	208	327	28	21	7.1

CAD

Green Pin

Green Pin[®] Sling Hook CL GR10

Grade 100 clevis sling hook

- Material: alloy steel, grade 100, quenched and tempered
- Safety factor: MBL equals 4 x WLL
- Standard:
- MBL equals 4 x WLL ASTM A952/A952M-02 and the grade 100 chain fittings range design follows the EN1677 with values for grade 100
- Finish: painted blue
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI ^b DGUV

partnumber	for chain diameter	working load limit	length	width	width opening	thickness	width	width outside	width outside	length outside	diameter pin	weight each
			а	b	с	d	е	f	g	h	i	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPUCSC6	⁷ / ₃₂	1.4	2 15/16	⁹ / ₃₂	1 ¹ / ₃₂	¹⁹ / ₃₂	²⁵ / ₃₂	1 ³ / ₃₂	2 ²⁷ / ₃₂	4 ¹ / ₄	⁵ / ₁₆	0.64
GPUCSC7	⁹ / ₃₂	1.95	3 ³ / ₄	¹¹ / ₃₂	1 ³ / ₁₆	²⁵ / ₃₂	15/16	1 ¹ / ₄	3 ⁷ / ₁₆	5 ¹¹ / ₃₂	13/32	1.28
GPUCSC8	⁵ / ₁₆	2.6	3 ³ /4	¹¹ / ₃₂	1 ³ / ₁₆	²⁵ / ₃₂	¹⁵ / ₁₆	1 ¹ / ₄	3 ⁷ / ₁₆	5 ¹¹ / ₃₂	¹³ / ₃₂	1.28
GPUCSC10	³ /8	4	4 ⁷ / ₁₆	¹⁵ / ₃₂	1 ⁵ / ₁₆	¹⁵ / ₁₆	1 ⁵ / ₃₂	1 ²¹ / ₃₂	4 ³ / ₁₆	6 ¹⁵ / ₃₂	¹ / ₂	2.45
GPUCSC13	¹ / ₂	6.8	5 ⁷ / ₁₆	¹⁹ / ₃₂	1 ¹⁵ / ₃₂	1 ¹ / ₄	1 ¹⁷ / ₃₂	2 ¹ / ₈	5 ¹ / ₄	8 ³ / ₁₆	5/8	4.67
GPUCSC16	⁵ /8	10.3	6 ¹¹ / ₃₂	3/4	1 ²³ / ₃₂	1 ⁹ / ₁₆	1 ²³ / ₃₂	2 ¹¹ / ₁₆	6 ¹ / ₂	9 ⁷ / ₁₆	²⁵ / ₃₂	8.33
GPUCSC20	3/4	16	7 25/32	7/8	2 13/32	1 15/16	2 7/16	3 ⁷ / ₃₂	8 ³ / ₁₆	12	15/16	16.51
						······						

In mm

partnumber	for chain diameter	working load limit	length	width	width opening	thickness	width	width outside	width outside	length outside	diameter pin	weight each
			а	b	с	d	е	f	g	h	i	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPUCSC6	6	1.4	75	7	26	15	20	28	72	108	8	0.29
GPUCSC7		1.95	95	9	30	20	24	32	87	136	10	0.58
GPUCSC8	8	2.6	95	9	30	20	24	32	87	136	10	0.58
GPUCSC10	10	4	113	12	33	24	29	42	106	164	13	1.11
GPUCSC13	13	6.8	138	15	37	32	39	54	133	208	16	2.12
GPUCSC16	16	10.3	161	19	44	40	44	68	165	240	20	3.78
GPUCSC20	20	16	198	22	61	49	62	82	208	305	24	7.49

CAD

3

Green Pin® Self Locking Hook E GR10

Grade 100 eye self locking hook

• Material: alloy steel, grade 100, quenched and tempered

the EN1677 with values for grade 100 $\,$

- Safety factor:
- MBL equals 4 x WLL ASTM A952/A952M-02 and the grade 100 chain fittings range design follows • Standard:
- Finish:
- painted blue • Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI ^b DGUV

UXLO

partitumber	diameter	load limit	length	inside eye	opening	UNCKIESS	width	outside	outside	length	wiath	UNICRIESS	each
			а	b	с	d	е	f	g	h	i	j	
	inch	t	inch	inch	inch	lbs							
GPUXLO0	7/32	1.4	4 ³ /8	¹⁵ / ₁₆	1 ¹ / ₄	5/8	1 ¹ / ₃₂	1 ²⁷ / ₃₂	3 ¹ / ₃₂	5 ²⁵ / ₃₂	⁷ / ₁₆	⁹ / ₃₂	1.12
GPUXLO1	⁹ / ₃₂ - ⁵ / ₁₆	2.6	5 ⁹ / ₃₂	1 ⁵ / ₃₂	1 ¹¹ / ₁₆	²⁹ / ₃₂	1 5/32	2 ¹ / ₄	3 ⁵ /8	6 ¹⁵ / ₁₆	⁹ / ₁₆	⁹ / ₃₂	2.01
GPUXLO2	³ /8	4	6 ⁵ /8	1 ³ /8	1 ²⁷ / ₃₂	1 ¹ / ₄	1 ³ /8	2 23/32	4 ³ / ₈	8 ⁵ /8	²¹ / ₃₂	¹³ / ₃₂	3.95
GPUXLO3	¹ / ₂	6.8	7 ²⁷ / ₃₂	1 ¹³ / ₁₆	2 ¹³ / ₃₂	1 ¹⁵ / ₃₂	1 ²⁵ / ₃₂	3 ⁷ / ₁₆	5 ¹⁹ / ₃₂	10 13/32	²⁵ / ₃₂	1/2	7.41
GPUXLO4	⁵ /8	10.3	9 ²³ / ₃₂	2 ⁵ / ₁₆	2 ²⁹ / ₃₂	1 11/16	2 ⁷ / ₃₂	4 ³ / ₈	7 ⁹ / ₃₂	12 ²⁹ / ₃₂	1 ¹ / ₃₂	⁵ /8	15.43
GPUXLO5	3/4	16	11 5/32	2 ³ / ₄	3 17/32	2 ² / ₁₆	2 13/32	4 31/32	8 ¹ / ₁₆	14 21/32	1 ³ / ₃₂	²⁵ / ₃₂	20.33

. .

the last

In mm

partnumber	for chain	working	length	diameter	width	thickness	width	width	width	length	width	thickness	weight
	diameter	load		inside	opening			outside	outside				each
		limit		eye									
			а	b	с	d	е	f	g	h	i	j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPUXLO0	6	1.4	111	24	32	16	26	47	77	147	11	7	0.51
GPUXLO1	8	2.6	134	29	43	23	29	57	92	176	14	7	0.91
GPUXLO2	10	4	168	35	47	32	35	69	111	219	17	10	1.79
GPUXLO3	13	6.8	199	46	61	37	45	87	142	264	20	13	3.36
GPUXLO4	16	10.3	247	59	74	43	56	111	185	328	26	16	7
GPUXLO5	20	16	283	70	90	52	61	126	205	372	28	20	9.22

CAD

GFPin

Green Pin[®] Self Locking Hook CL GR10

Grade 100 clevis self locking hook

- Safety factor: MBL equals 4 x WLL
- Standard:
- MBL equals 4 x WLL ASTM A952/A952M-02 and the grade 100 chain fittings range design follows the EN1677 with values for grade 100

- Finish: painted blue
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification:
 2.1 2.2 3.1 MPI ^b DGUV

partnumber	diameter	load limit	length	wiath	opening	thickness	wiath	outside	outside	length	pin	each
			а	b	с	d	е	f	g	h	i	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPUXLC0	7/32	1.4	3 ⁵ /8	⁹ / ₃₂	1 ¹ / ₄	⁵ /8	1 ¹ / ₃₂	1 ³ / ₃₂	3 ¹ / ₃₂	5 ⁵ / ₃₂	5/16	1.08
GPUXLC07	⁹ / ₃₂	1.95	4 ⁹ / ₁₆	¹¹ / ₃₂	1 ¹¹ / ₁₆	²⁹ / ₃₂	1 ⁵ / ₃₂	1 ¹ / ₄	3 ⁵ /8	6 ¹¹ / ₃₂	13/32	2.01
GPUXLC1	⁵ / ₁₆	2.6	4 ⁹ / ₁₆	¹¹ / ₃₂	1 ¹¹ / ₁₆	²⁹ / ₃₂	1 ⁵ / ₃₂	1 ¹ / ₄	3 ⁵ /8	6 ¹¹ / ₃₂	¹³ / ₃₂	2.01
GPUXLC2	³ /8	4	5 ⁵ /8	¹⁵ / ₃₂	1 ²⁷ / ₃₂	1 ¹ / ₄	1 ³ /8	1 ²¹ / ₃₂	4 ³ / ₈	7 ⁷ /8	1/2	3.90
GPUXLC3	¹ / ₂	6.8	6 ⁹ / ₁₆	¹⁹ / ₃₂	2 13/32	1 ¹⁵ / ₃₂	1 ²⁵ / ₃₂	2 ¹ / ₈	5 ¹⁹ / ₃₂	9 ¹⁷ / ₃₂	⁵ /8	7.34
GPUXLC4	⁵ /8	10.3	7 ²⁹ / ₃₂	3/4	2 ²⁹ / ₃₂	1 ¹¹ / ₁₆	2 ¹ / ₈	2 ¹¹ / ₁₆	7 ⁹ / ₃₂	11 ¹⁷ / ₃₂	²⁵ / ₃₂	14.88
GPUXLC5	3/4	16	9 ⁷ / ₃₂	²⁹ / ₃₂	3 ¹⁷ / ₃₂	2 ² / ₁₆	2 13/32	3 ⁷ / ₃₂	8 ¹ / ₁₆	13 ¹¹ / ₃₂	15/16	21.10
						······································						

In mm

partnumber	for chain diameter	working load	length	width	width opening	thickness	width	width outside	width outside	length	diameter pin	weight each
		umit	a	b	c	d	e	f	g	h	i	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPUXLC0	6	1.4	92	7	32	16	26	28	77	131	8	0.49
GPUXLC07		1.95	116	9	43	23	29	32	92	161	10	0.91
GPUXLC1	8	2.6	116	9	43	23	29	32	92	161	10	0.91
GPUXLC2	10	4	143	12	47	32	35	42	111	200	13	1.77
GPUXLC3	13	6.8	167	15	61	37	45	54	142	242	16	3.33
GPUXLC4	16	10.3	201	19	74	43	54	68	185	293	20	6.75
GPUXLC5	20	16	234	23	90	52	61	82	205	339	24	9.57

CAD

Green Pin® Self Locking Hook S GR10

MBL equals 4 x WLL

2.1 2.2 3.1 MPI ^b DGUV

alloy steel, grade 100, quenched and tempered

the EN1677 with values for grade 100 $\,$

Grade 100 self locking hook with swivel

painted blue • Temperature range: -40°F up to +392°F (-40°C up to +200°C)

partnumber	for chain	working	length	length	width	width	thickness	width	width	length	diameter	thickness	weight
	ulameter	limit		inside	inside	opening			outside				each
			а	b	с	d	е	f	g	h	i	j	
	inch	t	inch	inch	inch	lbs							
GPUXLE0	7/32	1.4	4 13/16	1 ¹ / ₄	1 ¹ / ₄	1 ¹ / ₄	⁵ /8	1 ¹ / ₃₂	3 ¹ / ₃₂	7 ⁹ / ₁₆	¹⁵ / ₃₂	1/4	1.72
GPUXLE1	⁹ / ₃₂ - ⁵ / ₁₆	2.6	5 ¹³ / ₁₆	1 ¹⁷ / ₃₂	1 ¹⁵ / ₃₂	1 ¹¹ / ₁₆	²⁹ / ₃₂	1 ⁵ / ₃₂	3 5/8	9 ³ / ₃₂	⁹ / ₁₆	⁵ / ₁₆	3.06
GPUXLE2	³ /8	4	7 ⁷ / ₃₂	1 ¹³ / ₁₆	1 ⁷ /8	1 ²⁷ / ₃₂	1 ¹ / ₄	1 ³ /8	4 ³ /8	11 ³ / ₃₂	⁵ /8	7/16	5.64
GPUXLE3	1/2	6.8	8 7/16	2 ¹ / ₄	2 ⁹ / ₃₂	2 13/32	1 ¹⁵ / ₃₂	1 ²⁵ / ₃₂	5 ¹⁹ / ₃₂	13 7/32	¹³ / ₁₆	⁹ / ₁₆	10.05
GPUXLE4	⁵ /8	10.3	10 19/32	2 ⁹ / ₁₆	2 ⁷ /8	2 ²⁹ / ₃₂	1 ¹⁷ / ₃₂	2 ⁷ / ₃₂	7 ⁹ / ₃₂	16 ³ /8	¹⁵ / ₁₆	21/32	20.66
GPUXLE5	3/4	16	11 31/32	3 7/16	3 ⁷ / ₃₂	3 17/32	2 ² / ₁₆	2 13/32	8 ¹ / ₁₆	18 3/4	15/16	13/16	28.00

ASTM A952/A952M-02 and the grade 100 chain fittings range design follows

equipped with needle roller thrust bearing to enable rotation under load

In mm

• Material:

• Standard:

• Finish:

• Note:

• Safety factor:

• Certification:

partnumber	for chain diameter	working load limit	length	length inside	width inside	width opening	thickness	width	width outside	length	diameter	thickness	weight each
			а	b	с	d	е	f	g	h		j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPUXLE0	6	1.4	122	32	32	32	16	26	77	192	12	6	0.78
GPUXLE1	8	2.6	148	39	37	43	23	29	92	231	14	8	1.39
GPUXLE2	10	4	183	46	48	47	32	35	111	282	16	11	2.56
GPUXLE3	13	6.8	214	57	58	61	37	45	142	336	21	14	4.56
GPUXLE4	16	10.3	269	65	73	74	39	56	185	416	24	17	9.37
GPUXLE5	20	16	304	87	82	90	52	61	205	476	24	21	12.7

CAD

3

Green Pin[®] Grab Hook E GR10

Grade 100 eye grab hook

- Material: alloy steel, grade 100, quenched and tempered
- Safety factor: MBL equals 4 x WLL
- Standard:
- MBL equals 4 x WLL ASTM A952/A952M-02 and the grade 100 chain fittings range design follows the EN1677 with values for grade 100
- Finish: painted blue
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI ^b

partnumber	for chain diameter	working load	length	inside lenath	inside width	opening	thickness	width	width outside	length outside	width	thickness	weight each
		limit		eye	eye								
			а	b		d	е	f	g	h	i	j	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPUCRO6	7/32	1.4	1 ⁵ /8	¹⁵ / ₁₆	²⁹ / ₃₂	⁵ / ₁₆	¹⁵ / ₁₆	²⁵ / ₃₂	1 ²¹ / ₃₂	3 ¹¹ / ₁₆	¹¹ / ₃₂	1/4	0.55
GPUCRO8	⁵ / ₁₆	2.6	2 ³ / ₃₂	1 ¹ / ₁₆	1 ¹ / ₃₂	¹³ / ₃₂	1 ¹⁵ / ₃₂	1 ³ / ₃₂	2 ³ / ₃₂	4 23/32	13/32	5/16	1.1
GPUCRO10	³ /8	4	2 ⁵ /8	1 ¹ / ₂	1 ¹³ / ₃₂	¹⁵ / ₃₂	1 ²¹ / ₃₂	1 ¹⁷ / ₃₂	2 ¹⁹ / ₃₂	6 ⁷ / ₃₂	⁹ / ₁₆	¹³ / ₃₂	2.38
GPUCRO13	1/2	6.8	3 ⁹ / ₃₂	1 ²¹ / ₃₂	1 ⁵ /8	¹⁹ / ₃₂	2 ⁷ / ₃₂	1 ⁹ / ₁₆	3 ¹⁵ / ₃₂	7 ⁷ / ₃₂	⁵ /8	¹⁵ / ₃₂	4.39
GPUCRO16	5/8	10.3	4 ¹ / ₁₆	1 ²³ /32	1 ⁵ /8	23/32	2 ¹⁹ / ₃₂	1 11/16	3 ²⁵ / ₃₂	8 5/16	25/32	5/8	5.49

In mm

partnumber	for chain diameter	working load limit	length	inside length eye	inside width eye	opening	thickness	width	width outside	length outside	width	thickness	weight each
			а	b		d	е	f	g	h		j	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPUCRO6	6	1.4	41	24	23	8	24	20	42	94	9	6	0.25
GPUCRO8	8	2.6	53	27	26	10	37	28	53	120	10	8	0.5
GPUCRO10	10	4	67	38	36	12	42	39	66	158	14	10	1.08
GPUCRO13	13	6.8	83	42	41	15	56	40	88	183	16	12	1.99
GPUCRO16	16	10.3	103	44	41	18	66	43	96	211	20	16	2.49

CAD

Green Pin[®] Grab Hook CL GR10

Grade 100 clevis grab hook

- Material: alloy steel, grade 100, quenched and tempered
- Safety factor: MBL equals 4 x WLL
- Standard:
- ASTM A952/A952M-02 and the grade 100 chain fittings range design follows the EN1677 with values for grade 100

- Finish:
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)

painted blue

• Certification: 2.1 2.2 3.1 MPI ^b

UCRC

partnumber	for chain diameter	working load limit	length	width	width outside	opening	thickness	width	width outside	length outside	diameter pin	weight each
			а	b		d	е	f	g	h	i	
	inch	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	lbs
GPUCRC6	7/32	1.4	2 ¹ / ₁₆	⁹ / ₃₂	1 ³ / ₃₂	5/16	¹⁵ / ₁₆	³¹ / ₃₂	1 ²¹ / ₃₂	3 ¹⁹ / ₃₂	⁵ / ₁₆	0.62
GPUCRC8	⁵ / ₁₆	2.6	2 ¹⁷ / ₃₂	¹¹ / ₃₂	1 ¹ / ₄	13/32	1 ¹⁵ / ₃₂	1 ¹ / ₁₆	2 ³ / ₃₂	4 ¹ / ₄	¹¹ / ₃₂	1.15
GPUCRC10	³ /8	4	3 ¹⁷ / ₃₂	⁷ / ₁₆	1 ²¹ / ₃₂	¹⁵ / ₃₂	1 ²¹ / ₃₂	1 ¹ / ₂	2 ⁹ / ₁₆	5 ²⁹ / ₃₂	¹ / ₂	2.4
GPUCRC13	¹ / ₂	6.8	4 ¹ / ₃₂	¹⁹ / ₃₂	2 ¹ / ₈	¹⁹ / ₃₂	2 ⁷ / ₃₂	1 ⁴ / ₇	3 ¹ / ₁₆	6 ²⁷ / ₃₂	⁵ /8	4.78
GPUCRC16	5/8	10.3	4 13/16	²³ / ₃₂	2 ¹¹ / ₁₆	²³ / ₃₂	2 ⁹ / ₁₆	2 ⁹ / ₃₂	4 ¹ / ₈	8 ³ /8	²⁵ / ₃₂	8.29

In mm

CAD

Green Pin[®]

Green Pin® Foundry Hook E GR10

Grade 100 eye foundry hook

- Material:
- alloy steel, grade 100, quenched and tempered
- Safety factor: MBL equals 4 x WLL
- Standard: ASTM A952/A952M-02 painted blue
- Finish:
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- 2.1 2.2 3.1 MPI ^b DGUV
- Certification:

partnumber	for chain diameter	working load limit	length	diameter eye inside	width opening	thickness	width	diameter eye outside	width outside	length	thickness	weight each
			a	b	с	d	e	f	g	h	i	
	inch	t	inch	inch	inch	lbs						
GPUCFO6	7/32	1.4	3 ²¹ / ₃₂	23/32	1 ⁷ /8	21/32	7/8	1 ¹ / ₂	3 ¹³ / ₁₆	4 ⁷ / ₈	1/4	0.73
GPUCFO8	⁹ / ₃₂ - ⁵ / ₁₆	2.6	4 ⁷ /8	31/32	2 ¹⁵ / ₃₂	7/8	1 ⁵ / ₃₂	1 ³¹ / ₃₂	5 ³ / ₃₂	6 ¹ / ₂	⁵ / ₁₆	1.72
GPUCFO10	3/8	4	6 ³ / ₁₆	1 5/16	3 ⁵ / ₃₂	1 ³ / ₃₂	1 ¹³ / ₃₂	2 ⁹ / ₁₆	6 ¹¹ / ₃₂	8 ³ / ₁₆	13/32	3.31
GPUCFO13	1/2	6.8	7 15/32	1 ²³ / ₃₂	3 ²⁵ / ₃₂	1 ¹³ / ₃₂	1 13/16	3 5/16	7 ²⁵ / ₃₂	10 3/32	1/2	6.61

In mm

partnumber	for chain	working	length	diameter	width	thickness	width	diameter	width	length	thickness	weight
	diameter	load		eye	opening			eye	outside			each
		limit		inside				outside				
			а	b	с	d	е	f	g	h	i	
	mm	t	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
GPUCFO6	6	1.4	93	18	48	17	22	38	97	124	6	0.33
GPUCFO8	8	2.6	124	25	63	22	29	50	129	165	8	0.78
GPUCFO10	10	4	157	33	80	28	36	65	161	208	10	1.5
GPUCFO13	13	6.8	190	44	96	36	46	84	198	256	13	3

CAD

LIFTING EYES

Applications

Eye bolts are used for lifting machines, appliances or any other objects which cannot be lifted by hand or by fork lift truck.

Range

Green Pin® offers eye bolts in grade 80.

Design

The lifting eyes are made of grade 80 alloy steel. According to the ASME B30.26 standard. Only the forged base of type PAS is made of a weldable quality steel.

- e.g. GP (or EXCEL before)

Each eye bolt is generally marked with:

- Working Load Limit
- manufacturer's symbol
- thread diameter
- traceability code
- steel grade
- item code
- CE conformity code
- origin
- e.g. AB, for a particular party
 8
 e.g. ALUNC
 CE
 e.g. France

- e.g. 5/8"-11UNC

- e.g. 1.5t

Finish

The eye bolts are epoxy painted and supplied with a protective cover over the threads. Do not remove the cover until use. Grade 80 products were painted red under the Excel® brand. However, grade 80 products under the Green Pin® brand will be painted white.

Certification

Specific details of certificate availability can be found on each product page. Please verify your certification requirements at the time of order.

Instructions for use

Eye bolts should be inspected before use to ensure that:

- all markings are legible;
- an eye bolt with the correct WLL has been selected;
- the thread is undamaged and clean;
- eye bolts are free from nicks, gouges and cracks;
- never grind, machine or cut an eye bolt;
- eye bolts may not be heat treated as this may affect their WLL;
- never modify, repair or reshape an eye bolt by machining, welding, heating or bending as this may
 affect the WLL;
- lifting points and the other components are of the same steel grade;
- lifting points ALUNC can be side loaded with reduction of the WLL (except ADA);
- always make sure that the lifting point is supporting the load correctly;
- lifting points should be seated well down in the hook;
- lifting points are not distorted or unduly worn;
- when used as a lifting device, the eye bolt should always be fully screwed into the load in such a way that it fits properly against the load.

Temperature

Temperature °Fahrenheit	Temperature °Celsius	Reduction for elevated temperatures New Working Load Limit
up to 392 °F	up to 200°C	100% of original WLL
392 - 572 °F	200°C - 300°C	90% of original WLL
572 - 752 °F	300°C - 400°C	75% of original WLL
> 752 °F	> 400°C	not allowed

Assembly

The thread length should be adapted to the material of the load. For hard materials, the thread length must not be smaller than 1.5 times the diameter (e.g. M20, minimum length 30 mm). For soft materials such as aluminum or brass, a length of 3 times the diameter is needed. For soft materials, consider using a longer length and through-hole mounting with a nut and washer on the other side. The nut on the bolt should at least be Class 8, but Class 10 or 12 is recommended.

The bolt thread and the tapped hole in the load must be compatible and both must be in a good condition. The tapping should be at least 20% deeper than the thread length. The surface should be flat and perpendicular to the thread to enable full contact with the lifting point.

The material to which the lifting point is attached should be strong enough to withstand lifting forces without any deformation. The lifting points must fit perfectly on the material of the load to be lifted. Full contact between the lifting point and the surface is required.

- 1. The lifting points should match the size of the hook, so that they can be correctly positioned into the hook.
- 2. Never use a chain as a loop between two eyebolts.

Please pay attention to the center of gravity of the load when positioning the lifting eye (symmetrically to the center). The threaded hole is to be located at a distance of at least 3 times the diameter of the bolt from the edge of the load.

Fasten the lifting eyes by hand and without the use of any tools or leverage. The lifting eye has to be tightened until the lower edge connects to the surface of the load.

Below load reductions must be taken into account when use slings under a angle. These values are valid in the same plane as the lifting point.

ALUNC eyebolts

100% of original WLL: 0-45° 50% of original WLL: 45-90°

We recommend the use of pivoting and rotating lifting eyes (ADA) when the angle is above 30° or use ALUNC eyebolts with reduction above 45° .

ADA

100% of original WLL: 0-90°

For ADA type pivoting and rotating lifting eyes, the mounting screws are to be tightened at the recommended torque (see table in the catalogue). The torque should be regularly checked as screws can come loose after prolonged use. Make sure the hoist ring can pivot and rotate freely in all directions.

The type PAS transport ring should be welded as described in the product information sheet PI-03-01.

It is required that the products are regularly inspected and that the inspection should take place minimally in accordance with the safety standards given in the country of use. This is required because the products in use may be affected by wear, misuse, overloading, etc. with a consequence of deformation and alteration of the material structure. Inspection by a competent person should take place at least every six months and even more frequently when the components are used in severe operating conditions.

Green Pin® Lifting Eye UNC GR8

Grade 80 lifting eye UNC

• Material: alloy steel, grade 80, quenched and tempered

2.1 2.2 3.1 MPI ^b CE

- Safety factor: MBL equals 5 x WLL painted red or white
- Finish:
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)

• Certification:

partnumber	working	ulameter	ulameter	ulameter	ulameter	tength	unickness	ulameter	weight
	load	thread	base	eye	eye		base		each
	limit			outside	inside				
		а	b	с	d	е	f	g	
	t	inch	inch	inch	inch	inch	inch	inch	lbs
GPAL06UNC	0.2	1/4 - 20UNC	²⁵ / ₃₂	1 ¹¹ / ₃₂	²⁵ / ₃₂	²⁵ / ₃₂	21/32	⁹ / ₃₂	0.11
GPAL10UNC	0.7	³ / ₈ - 16UNC	²⁵ / ₃₂	1 ¹ / ₂	⁷ /8	1 ³ / ₁₆	3/4	⁵ / ₁₆	0.18
GPAL12UNC	1	1/2 - 13UNC	³¹ / ₃₂	1 ²⁷ / ₃₂	1 ¹ / ₁₆	1 13/32	²⁹ / ₃₂	¹³ / ₃₂	0.31
GPAL16UNC	1.5	⁵ / ₈ - 11UNC	1 ¹³ / ₃₂	2 ¹⁵ / ₃₂	1 ³ /8	2 ³ / ₃₂	1 ⁷ / ₃₂	⁹ / ₁₆	0.84
GPAL20UNC	2.5	³ / ₄ - 10UNC	1 ⁹ / ₁₆	2 ²⁷ / ₃₂	1 ⁹ / ₁₆	2 ⁹ / ₃₂	1 ¹¹ / ₃₂	5/8	1.21
GPAL22UNC	3	⁷ / ₈ - 9UNC	1 ²¹ / ₃₂	3 ⁷ / ₃₂	1 ²⁵ / ₃₂	2 ¹⁷ / ₃₂	1 ¹ / ₂	3/4	1.79
GPAL24UNC	4	1 - 8UNC	⁵ / ₃₂	3 ³ / ₄	2 ⁵ / ₃₂	3 ⁵ / ₁₆	1 ⁹ / ₁₆	²⁵ / ₃₂	2.51
GPAL27UNC	5	1 ¹ / ₈ - 7UNC	2 ⁵ / ₃₂	3 ³ / ₄	2 ⁵ / ₃₂	3 ⁵ / ₁₆	1 ⁹ / ₁₆	²⁵ / ₃₂	2.67
GPAL30UNC	6	1 ¹ / ₄ - 7UNC	2 ³ /8	4 ¹ / ₄	2 ³ /8	3 ²⁹ / ₃₂	1 15/16	15/16	4.21
GPAL36UNC	8	1 ¹ / ₂ - 6UNC	2 ⁹ / ₁₆	4 ²¹ / ₃₂	2 ¹¹ / ₁₆	4 ¹⁹ / ₃₂	1 27/32	31/32	5.56

In mm

partnumber	working	diameter	diameter	diameter	diameter	length	thickness	diameter	weight
	load	thread	base	eye	eye		base		each
	limit			outside	inside				
		а	b	с	d	е	f	g	
	t	inch	mm	mm	mm	mm	mm	mm	kg
GPAL06UNC	0.2	1/4 - 20UNC	20	34	20	20	17	7	0.05
GPAL10UNC	0.7	³ / ₈ - 16UNC	20	38	22	30	19	8	0.08
GPAL12UNC	1	¹ / ₂ - 13UNC	25	47	27	36	23	10	0.14
GPAL16UNC	1.5	⁵ /8 - 11UNC	36	63	35	53	31	14	0.38
GPAL20UNC	2.5	³ / ₄ - 10UNC	40	72	40	58	34	16	0.55
GPAL22UNC	3	⁷ / ₈ - 9UNC	42	82	45	64	38	19	0.81
GPAL24UNC	4	1 - 8UNC	55	95	55	84	40	20	1.14
GPAL27UNC	5	1 ¹ / ₈ - 7UNC	55	95	55	84	40	20	1.21
GPAL30UNC	6	1 ¹ / ₄ - 7UNC	60	108	60	99	49	24	1.91
GPAL36UNC	8	1 ¹ / ₂ - 6UNC	65	118	68	117	47	25	2.52

CAD INFO

Green Pin® Rotating Hoist Ring UNC GR8

Grade 80 rotating hoist ring UNC

- Material: alloy steel, grade 80, quenched and tempered
- Safety factor:
- MBL equals 5 x WLL painted red or white
- Finish: • Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI ^b CE

• Note:

In mm

WLL indicated hereunder are given in the worst conditions of use, i.e. 90°

width longth diamater longth thickness width diamater diamater longth her longth weight

ADAUNC

partitutiber	load	thread	inside	inside	ulameter	length	base	outside	base	base	inside	пех кеу	value	each
	limit													
		а	b	с	d	е	f	g	h	i	j			
	t	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	Ft. lbs	lbs
GPADA08UNC	0.4	⁵ / ₁₆ - 18UNC	1 ³ /8	1 ⁵ /8	1/2	23/32	1 ³ /8	2 11/16	1 11/32	1 ¹ / ₂	1 11/16	6	5	0.95
GPADA10UNC	0.6	³ / ₈ - 16UNC	1 ³ /8	1 17/32	1/2	23/32	1 15/32	2 11/16	1 11/32	1 ¹ / ₂	1 11/16	8	10	0.97
GPADA12UNC	1	¹ / ₂ - 13UNC	$1^{3}/_{8}$	1 13/32	1/2	¹⁵ / ₁₆	1 17/32	2 11/16	1 11/32	1 ¹ / ₂	1 11/16	10	16	1.01
GPADA16UNC	1.7	⁵ / ₈ - 11UNC	$1^{3}/_{8}$	1 21/32	¹ / ₂	1 ⁷ / ₃₂	1 11/16	2 11/16	1 11/32	1 ¹ / ₂	2 ² / ₁₆	13	41	1.15
GPADA20UNC	2.5	³ / ₄ - 10UNC	$1^{3}/_{8}$	1 ¹ / ₂	1/2	1 ⁷ / ₃₂	1 27/32	2 11/16	1 11/32	1 ¹ / ₂	2 ² / ₁₆	16	81	1.30
GPADA22UNC	3.5	⁷ / ₈ - 9UNC	2 ³ / ₃₂	2 ¹ / ₄	²⁵ / ₃₂	1 15/32	2 23/32	4 ¹ / ₈	1 15/16	2 ⁷ / ₃₂	2 25/32	19	111	4.14
GPADA24UNC	4.5	1 - 8UNC	2 ³ / ₃₂	2 5/32	25/32	1 11/16	2 25/32	4 ¹ / ₈	1 15/16	2 7/32	2 25/32	19	140	4.25

partnumber	working load	diameter thread	width inside	length inside	diameter	length	thickness base	width outside	diameter base	diameter base	length inside	hex key	torque value	weight each
	limit													
		а	b	с	d	е	f	g	h	i	j			
	t	inch	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	Nm	kg
GPADA08UNC	0.4	⁵ / ₁₆ - 18UNC	35	41	13	18	35	68	34	38	43	6	6.5	0.43
GPADA10UNC	0.6	³ /8 - 16UNC	35	39	13	18	37	68	34	38	43	8	13	0.44
GPADA12UNC	1	¹ / ₂ - 13UNC	35	36	13	24	39	68	34	38	43	10	22	0.46
GPADA16UNC	1.7	⁵ /8 - 11UNC	35	42	13	31	43	68	34	38	52	13	55	0.54
GPADA20UNC	2.5	³ / ₄ - 10UNC	35	38	13	31	47	68	34	38	52	16	110	0.55
GPADA22UNC	3.5	⁷ /8 - 9UNC	53	57	20	37	69	105	49	56	71	19	150	1.88
GPADA24UNC	4.5	1 - 8UNC	53	55	20	43	71	105	49	56	71	19	190	1.93

CAD INFO

Green Pin

PAS

Green Pin® Weld-On Transport Ring

Weld-on transport ring

• Material:

base: mild steel, ring: alloy steel, grade 80, quenched and tempered MBL equals 4 x WLL

- Safety factor: painted red or white
- Finish:
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 CE
- Note:

partnumber	working load limit	diameter	width inside	length inside	length base	height base	length	weight each
	t	a inch	b inch	c inch	d inch	e inch	f inch	lbs
GPPAS1	1.2	1/2	1 ⁹ / ₁₆	1 ²¹ / ₃₂	1 ³ /8	1 ³ / ₃₂	3 ⁹ / ₃₂	0.88
GPPAS3	3.2	23/32	1 ²⁵ / ₃₂	1 7/8	1 ²¹ / ₃₂	1 ⁵ / ₁₆	3 ²⁹ / ₃₂	1.70
GPPAS5	5.4	7/8	2 5/32	2 ¹ / ₄	1 15/16	1 ²¹ / ₃₂	4 ³ / ₄	3.13
GPPAS8	8.2	1 ¹ / ₃₂	2 ³ / ₄	2 ⁵ /8	2 ¹⁷ / ₃₂	1 31/32	5 ⁵ /8	5.51
GPPAS12	12.8	1 ³ / ₃₂	3 ¹¹ / ₃₂	3 17/32	3 ³ / ₁₆	2 5/32	6 ¹³ / ₁₆	8.16
GPPAS15	15.5	1 11/32	3 ²⁹ / ₃₂	3 ²¹ / ₃₂	3 17/32	2 15/32	7 15/32	12.50

In mm

partnumber	working load limit	diameter	width inside	length inside	length base	height base	length	weight each
		а	b	с	d	e	f	
	t	mm	mm	mm	mm	mm	mm	kg
GPPAS1	1.2	13	40	42	35	28	83	0.4
GPPAS3	3.2	18	45	48	42	33	99	0.77
GPPAS5	5.4	22	55	57	49	42	121	1.42
GPPAS8	8.2	26	70	67	64	50	143	2.5
GPPAS12	12.8	28	85	90	78	55	173	3.7
GPPAS15	15.5	34	99	93	90	63	190	5.67

CAD INFO

welding must be done in accordance with DIN 5817 resp. 15429, by a qualified welder according to EN 287-1

4

SHORTENING CLUTCHES

Applications

Grade 80 shortening clutches are designed to be used in the manufacturing of grade 80 chain slings. Grade 100 shortening clutches are designed to be used in the manufacturing of grade 100 slings.

Range

Green Pin® offers a range of grade 80 and grade 100 shortening clutches. The range extends from $^{7}\!/_{32}$ to $^{3}\!/_{4}$ ".

Design

Green Pin® Grade 80 and Grade 100 shortening clutches are manufactured from drop forged alloy steel.

- The shortening components are generally marked with:
- manufacturer's symbol
- chain diameter in mm and/or inch
- traceability code
- steel grade
- item code
- origin

- GP
 - e.g. 13 and/or 1/2"
- e.g. HA
- 8 or 10
- e.g. GCV
- France

Finish

Green Pin[®] shortening clutches are painted. Grade 80 products were painted yellow or red under the Excel[®] brand. However, grade 80 products under the Green Pin[®] brand will be painted white. Grade 100 products are painted blue and will remain so.

Instructions for use

All grade 80 and grade 100 components should be inspected before use to ensure that:

- all markings are legible;
- items with the correct WLL have been selected. For further details, refer to the EN818 standard for chain slings;
- items are not distorted or unduly worn;
- all items are free from nicks, gouges, cracks and corrosion.

Also:

- all components of the sling must be of the same steel grade;
- items should be used for in-line lifting only;
- the bolt, nut or any other locking system must not vibrate out of position;
- items may not be heat treated as this may affect their WLL;
- for a proper use of our shortening clutches, the FAQ PI-03-04A is available;
- never modify, repair or reshape an item by machining, welding, heating or bending as this may affect the WLL.

Green Pin[®] Shortening Clutch EN 1677-1 GR8

Grade 80 shortening clutch EN 1677-1

- Material:
 - alloy steel, grade 80, quenched and tempered MBL equals 4 x WLL
- Safety factor:
- Standard: • Finish:
- ASTM A952/A952M-02, EN 1677-1 and DIN 5692 painted yellow (J), red (R) or white
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI b DGUV

partnumber	for chain diameter	working load limit	length	width inside	length	width outside	width	diameter pin	weight each
			а	b	с	d	е	f	
	inch	t	inch	inch	inch	inch	inch	inch	lbs
GPGC6	⁷ / ₃₂	1.12	2	²⁹ / ₃₂	2 15/16	1 ²¹ / ₃₂	⁹ / ₃₂	⁵ / ₁₆	0.49
GPGC7/8	¹ / ₄ - ⁵ / ₁₆	2	2 ⁵ /8	1 ³ / ₁₆	3 ¹¹ / ₁₆	1 ³¹ / ₃₂	11/32	¹¹ / ₃₂	0.90
GPGC10	3/8	3.2	3 ¹ / ₈	1 ¹ / ₂	4 ⁹ / ₁₆	2 ¹⁵ / ₃₂	¹⁵ / ₃₂	1/2	1.81
GPGC13	1/2	5.4	4 ¹ / ₁₆	1 ¹⁵ / ₁₆	5 ⁷ /8	3 ¹ / ₈	¹⁹ / ₃₂	5/8	3.68
GPGC16	5/8	8.2	5 ¹ / ₃₂	2 ³ /8	7 ¹ / ₄	3 ²⁹ / ₃₂	3/4	²⁵ / ₃₂	6.83
GPGC18/20	3/4	12.8	6 ¹ / ₁₆	2 ¹⁵ / ₁₆	8 ¹⁵ / ₃₂	4 ⁷ / ₈	²⁹ / ₃₂	¹⁵ / ₁₆	8.86

In mm

partnumber	for chain diameter	working load limit	length	width inside	length	width outside	width	diameter pin	weight each
			а	b	с	d	е	f	
	mm	t	mm	mm	mm	mm	mm	mm	kg
GPGC6	6	1.12	51	23	75	42	7	8	0.22
GPGC7/8	7/8	2	67	30	94	50	9	9	0.41
GPGC10	10	3.2	79	38	116	63	12	13	0.82
GPGC13	13	5.4	103	49	149	79	15	16	1.67
GPGC16	16	8.2	128	60	184	99	19	20	3.1
GPGC18/20	18/20	12.8	154	75	215	124	23	24	4.02

CAD INFO

Green Pin® Shortening Clutch with Lock EN 1677-1 GR8

• Material: • Safety factor:

- alloy steel, grade 80, quenched and tempered MBL equals 4 x WLL
- Standard: • Finish:
- ASTM A952/A952M-02, EN 1677-1 and DIN 5692
- painted yellow (J), red (R) or white • Temperature range: -40°F up to +392°F (-40°C up to +200°C)

Grade 80 shortening clutch with locking pin EN 1677-1

• Certification: 2.1 2.2 3.1 MPI b DGUV

partnumber	for chain diameter	working load limit	length	width inside	length	width outside	width	diameter pin	diameter pin	weight each
			а	b	с	d	е	f	g	
	inch	t	inch	inch	inch	inch	inch	inch	inch	lbs
GPGCV6	7/32	1.12	2	²⁹ / ₃₂	2 ¹⁵ / ₁₆	1 ²¹ / ₃₂	⁹ / ₃₂	⁵ / ₁₆	⁹ / ₃₂	0.49
GPGCV8	¹ / ₄ - ⁵ / ₁₆	2	2 ⁵ /8	1 ³ / ₁₆	3 ¹¹ / ₁₆	1 ³¹ / ₃₂	¹¹ / ₃₂	11/32	⁵ / ₁₆	0.90
GPGCV10	3/8	3.2	3 ¹ /8	1 ¹ / ₂	4 ⁹ / ₁₆	2 ¹⁵ / ₃₂	¹⁵ / ₃₂	1/2	¹⁵ / ₃₂	1.81
GPGCV13	1/2	5.4	4 ¹ / ₁₆	1 ¹⁵ / ₁₆	5 ⁷ /8	3 ¹ / ₈	¹⁹ / ₃₂	⁵ /8	5/8	3.68
GPGCV16	5/8	8.2	5 ¹ / ₃₂	2 ³ /8	7 ¹ / ₄	3 ²⁹ / ₃₂	3/4	²⁵ / ₃₂	²⁵ / ₃₂	6.83
GPGCV20	3/4	12.8	6 ¹ / ₁₆	2 15/16	8 15/32	4 ⁷ / ₈	²⁹ / ₃₂	15/16	²⁵ / ₃₂	8.86

In mm

partnumber	for chain	working	length	width	length	width	width	diameter	diameter	weight
	diameter	load		inside		outside		pin	pin	each
		limit								
			а	b	с	d	е	f	g	
	mm	t	mm	mm	mm	mm	mm	mm	mm	kg
GPGCV6	6	1.12	51	23	75	42	7	8	7	0.22
GPGCV8	8	2	67	30	94	50	9	9	8	0.41
GPGCV10	10	3.2	79	38	116	63	12	13	12	0.82
GPGCV13	13	5.4	103	49	149	79	15	16	16	1.67
GPGCV16	16	8.2	128	60	184	99	19	20	20	3.1
GPGCV20	20	12.8	154	75	215	124	23	24	20	4.02

CAD INFO

GCV

Green Pin® Shortening Clutch with Double Lock EN 1677-1 GR8

Grade 80 shortening clutch with double locking pin EN 1677-1

- Material: alloy steel, grade 80, quenched and tempered
- Safety factor: MBL equals 4 x WLL
- EN 1677-1 and DIN 5692 • Standard:
 - painted yellow (J), red (R) or white
- Finish: • Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI ^b DGUV CE

GDV

partnumber	for chain diameter	working load limit	length	width inside	length	width outside	width	diameter pin	weight each
			а	b		d	e	f	
	inch	t	inch	inch	inch	inch	inch	inch	lbs
GPGDV6	7/32	1.12	3 ²⁹ / ₃₂	²⁹ / ₃₂	4 ²³ / ₃₂	1 ²¹ / ₃₂	9/32	⁹ / ₃₂	1.08
GPGDV8	5/16	2	4 13/32	1 ³ / ₁₆	5 ¹ / ₂	1 ³¹ / ₃₂	11/32	5/16	1.70
GPGDV13	1/2	5.4	7	1 15/16	8 ³ / ₁₆	3 ¹ / ₈	19/32	5/8	6.28

In mm

partnumber	for chain diameter	working load limit	length	width inside	length	width outside	width	diameter pin	weight each
			а	b	с	d	е	f	
	mm	t	mm	mm	mm	mm	mm	mm	kg
GPGDV6	6	1.12	99	23	120	42	7	7	0.49
GPGDV8	8	2	112	30	140	50	9	8	0.77
GPGDV13	13	5.4	178	49	208	79	15	16	2.85

Green Pin® Shortening Clutch GR10

Grade 100 shorting clutch with locking pin

UGC

• Safety factor: • Standard: • Finish:

painted blue • Temperature range: -40°F up to +392°F (-40°C up to +200°C) 2.1 2.2 3.1 MPI ^b DGUV

MBL equals 4 x WLL

• Certification:

• Material:

partnumber	for chain diameter	working load limit	length	width inside	length	width outside	width	diameter pin	weight each
			а	b	с	d	e	f	
	inch	t	inch	inch	inch	inch	inch	inch	lbs
GPUGC6	7/32	1.4	2	²⁹ / ₃₂	2 ¹⁵ / ₁₆	1 ²¹ / ₃₂	⁹ / ₃₂	⁵ / ₁₆	0.51
GPUGC8	⁵ / ₁₆	2.6	2 ⁵ /8	1 ³ / ₁₆	3 ¹¹ / ₁₆	1 ³¹ / ₃₂	¹¹ / ₃₂	¹³ / ₃₂	0.99
GPUGC10	³ /8	4	3 ¹ / ₈	1 ¹ / ₂	4 ⁹ / ₁₆	2 ¹⁵ / ₃₂	¹⁵ / ₃₂	¹ / ₂	1.98
GPUGC13	¹ / ₂	6.8	4 ¹ / ₁₆	1 ¹⁵ / ₁₆	5 ⁷ /8	3 ¹ / ₈	¹⁹ / ₃₂	⁵ /8	3.97
GPUGC16	⁵ /8	10.3	5 ¹ / ₃₂	2 ³ /8	7 ¹ / ₄	3 ²⁹ / ₃₂	3/4	²⁵ / ₃₂	6.83
GPUGC20	3/4	16	6 ¹ / ₁₆	2 15/16	8 ¹⁵ / ₃₂	4 ⁷ / ₈	29/32	15/16	8.82

ASTM A952/A952M-02 and the grade 100 chain fittings range design follows

alloy steel, grade 100, quenched and tempered

In mm

partnumber	for chain diameter	working load limit	length	width inside	length	width outside	width	diameter pin	weight each
			а	b	с	d	е	f	
	mm	t	mm	mm	mm	mm	mm	mm	kg
GPUGC6	6	1.4	51	23	75	42	7	8	0.23
GPUGC8	8	2.6	67	30	94	50	9	10	0.45
GPUGC10	10	4	79	38	116	63	12	13	0.9
GPUGC13	13	6.8	103	49	149	79	15	16	1.8
GPUGC16	16	10.3	128	60	184	99	19	20	3.1
GPUGC20	20	16	154	75	215	124	23	24	4

CAD INFO

SHORTENING CLUTCHES

5

Green Pin

Grade 100 shortening clutch with locking pin

• Material: alloy steel, grade 100, quenched and tempered

Green Pin® Shortening Clutch with Lock GR10

- Safety factor: MBL equals 4 x WLL
- Standard:
- ASTM A952/A952M-02 and the grade 100 chain fittings range design follows the EN1677 with values for grade 100
- Finish: painted blue
- Temperature range: -40°F up to +392°F (-40°C up to +200°C) 2.1 2.2 3.1 MPI ^b DGUV
- Certification:

partnumber	for chain diameter	working load limit	length	width inside	length	width outside	width	diameter pin	diameter pin	weight each
			а	b	с	d	е	f	g	
	inch	t	inch	inch	inch	inch	inch	inch	inch	lbs
GPUGCV6	7/32	1.4	2	²⁹ / ₃₂	2 15/16	1 21/32	⁹ / ₃₂	⁵ / ₁₆	⁹ / ₃₂	0.51
GPUGCV8	5/16	2.6	2 ⁵ / ₈	1 ³ / ₁₆	3 ¹¹ / ₁₆	1 31/32	¹¹ / ₃₂	¹³ / ₃₂	⁵ / ₁₆	0.97
GPUGCV10	³ /8	4	3 ¹ / ₈	1 ¹ / ₂	4 ⁹ / ₁₆	2 15/32	¹⁵ / ₃₂	¹ / ₂	¹⁵ / ₃₂	1.68
GPUGCV13	1/2	6.8	4 ¹ / ₁₆	1 ¹⁵ / ₁₆	5 ⁷ /8	3 ¹ / ₈	¹⁹ / ₃₂	⁵ /8	⁵ /8	3.68
GPUGCV16	5/8	10.3	5 ¹ / ₃₂	2 ³ /8	7 ¹ / ₄	3 ²⁹ / ₃₂	3/4	²⁵ / ₃₂	²⁵ / ₃₂	6.83
GPUGCV20	3/4	16	6 ¹ / ₁₆	2 15/16	8 ¹⁵ / ₃₂	4 ⁷ /8	²⁹ / ₃₂	15/16	25/32	8.82

In mm

partnumber	for chain diameter	working load limit	length	width inside	length	width outside	width	diameter pin	diameter pin	weight each
			а	b	с	d	е	f	g	
	mm	t	mm	mm	mm	mm	mm	mm	mm	kg
GPUGCV6	6	1.4	51	23	75	42	7	8	7	0.23
GPUGCV8	8	2.6	67	30	94	50	9	10	8	0.44
GPUGCV10	10	4	79	38	116	63	12	13	12	0.76
GPUGCV13	13	6.8	103	49	149	79	15	16	16	1.67
GPUGCV16	16	10.3	128	60	184	99	19	20	20	3.1
GPUGCV20	20	16	154	75	215	124	23	24	20	4

CAD INFO

Green Pin® Shortening Clutch with Double Lock GR10

Grade 100 shortening clutch with double locking pin

- Material:
- alloy steel, grade 100, quenched and tempered MBL equals 4 x WLL
- Safety factor: M • Standard: th
- Finish:

In mm

- the grade 100 chain fittings range design follows the EN1677 with values for grade 100 painted blue
- inish: pain
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 2.2 3.1 MPI ^b DGUV CE

partnumber	for chain	working	length	width	length	width	width	diameter	weight
	diameter	load		inside		outside		pin	each
		limit							
			а	b		d	e	f	
	inch	t	inch	inch	inch	inch	inch	inch	lbs
GPUGDV6	inch 7/ ₃₂	t 1.4	inch 3 ²⁹ / ₃₂	inch ²⁹ / ₃₂	inch 4 ²³ / ₃₂	inch 1 ²¹ / ₃₂	inch ⁹ / ₃₂	inch ⁹ / ₃₂	lbs 1.08
GPUGDV6 GPUGDV8	inch 7/ ₃₂ 5/ ₁₆	t 1.4 2.6	inch 3 ²⁹ / ₃₂ 4 ¹³ / ₃₂	inch ²⁹ / ₃₂ 1 ³ / ₁₆	inch 4 ²³ / ₃₂ 5 ¹ / ₂	inch 1 ²¹ / ₃₂ 1 ³¹ / ₃₂	inch 9/ ₃₂ ¹¹ / ₃₂	inch 9/ ₃₂ 5/ ₁₆	lbs 1.08 1.70

UGDV

partnumber	for chain	working	length	width	length	width	width	diameter	weight
	diameter	load		inside		outside		pin	each
		limit							
			а	b	с	d	е	f	
	mm	t	mm	mm	mm	mm	mm	mm	kg
GPUGDV6	6	1.4	99	23	120	42	7	7	0.49
GPUGDV8	8	2.6	112	30	140	50	9	8	0.77
GPUGDV13	13	6.7	178	49	208	79	15	16	2.85

CAD INFO

Applications

Spare parts are replacement components for current grade 80, grade 100 or stainless steel products.

Range

Green Pin® offers a wide range of spare parts such as:

- Spare Kit for Self Locking Hooks;
- Spare Kit for Clevis Fittings;
- Grade 80 and grade 100 Latches.

Finish

Specific details of the finish of spare parts can be found on each product page.

Certification

Specific details of certificate availability can be found on each product page. Please verify your certification requirements at the time of order.

Instructions for use

Items should be inspected before use to ensure that:

- items are not distorted or unduly worn;
- items are free from nicks, gouges and cracks;

Also:

- all components of the sling must be of the same steel grade;
- items may not be heat treated;
- never modify, repair or reshape an item by machining, welding, heating or bending, as this may affect its performance.

Green Pin[®] Self Locking Hooks GR8/GR10 Spare Kit

Replacement kit for grade 80 and 10 self locking hooks

• Material:

steel self coloured

2.1

length pin

• Finish: self colo

• Temperature range: -40°F up to +392°F (-40°C up to +200°C)

plastic tube included, to make assembly easier

diameter

pin

width

weight

each

Certification:

partnumber

• Note:

0

In mm

partnumber	length	diameter	width	weight
	pin	pin		each
	а	b	с	
	mm	mm	mm	kg
GPVR1	22	6	28	0.02
GPVR2	26	6	31	0.03
GPVR3	30	8	37	0.05
GPVR4	40	10	47	0.1
GPVR5	55	10	58	0.2

partnumber		for fitting									
	GKO	XLO	UXLO	GKC	XLC	UXLC	GKE	XLE	UXLE	XLBA	XLS
GPVR1	GPGKO1	GPXLO0	GPUXLO0	GPGKC1	GPXLC0	GPUXLC0	GPGKE1	GPXLE0	GPUXLE0	GPXLBA0	
GPVR2	GPGKO2	GPXLO1	GPUXLO1	GPGKC2	GPXLC1	GPUXLC07	GPGKE2	GPXLE1	GPUXLE1	GPXLBA1	
						GPUXLC1					
GPVR3	GPGKO3	GPXLO2	GPUXLO2	GPGKC3	GPXLC2	GPUXLC2	GPGKE3	GPXLE2	GPUXLE2	GPXLBA2	GPXLS60
GPVR4	GPGKO4	GPXLO3	GPUXLO3	GPGKC4	GPXLC3	GPUXLC3	GPGKE4	GPXLE3	GPUXLE3	GPXLAB3	
GPVR5	GPGKO5	GPXLO4	GPUXLO4	GPGKC5	GPXLC4	GPUXLC4	GPGKE5	GPXLE4	GPUXLE4	GPXLAB4	
	GPGKO6	GPXLO5	GPUXLO5	GPGKC6	GPXLC5	GPUXLC5	GPGKE6	GPXLE5	GPUXLE5		

INFO

Green Pin[®] Clevis Fittings GR8 Spare Kit

Grade 80 spare kit for clevis fittings

- Material: alloy steel, grade 80, quenched and tempered self coloured
- Finish:
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification: 2.1 3.1
- Note: GPAC5 is suitable for $1/_4$ inch clevis components and fits $3/_{16}$ " hoist chain, GPAC7 is suitable for $\frac{5}{16}$ inch clevis components and fits $\frac{1}{4}$ " hoist chain, GPAC9 is suitable for $^{13}/_{32}$ inch clevis components and fits $^{11}/_{32}$ " hoist chain

AC	
\square	
	b

partnumber	diameter	length	diameter	length	weight
	pin	pin	pin	pin	each
	а	b	с	d	
	inch	inch	inch	inch	lbs
GPAC5	1/4	1 ³ / ₃₂	1/8	⁹ / ₁₆	0.02
GPAC6	⁵ / ₁₆	1 ³ / ₃₂	1/8	⁹ / ₁₆	0.02
GPAC7	⁵ / ₁₆	1 ¹ / ₄	1/8	⁷ /8	0.04
GPAC7/8	¹¹ / ₃₂	1 ¹ / ₄	1/8	⁷ /8	0.04
GPAC10	1/2	1 ⁵ /8	⁵ / ₃₂	¹⁵ / ₁₆	0.09
GPAC13	⁵ /8	2 ³ / ₃₂	⁵ / ₃₂	1 ¹ / ₄	0.18
GPAC16	²⁵ / ₃₂	2 ¹⁹ / ₃₂	³ / ₁₆	1 ³ /8	0.35
GPAC18/20	¹⁵ / ₁₆	3 5/32	1/4	1 ²⁵ / ₃₂	0.62
GPAC22	1 ³ / ₃₂	3 3/4	5/16	1 ³¹ / ₃₂	0.99

In mm

partnumber	diameter	length	diameter	length	weight
	pin	pin	pin	pin	each
	а	b		d	
	mm	mm	mm	mm	kg
GPAC5	6	28	3	14	0.01
GPAC6	8	28	3	14	0.01
GPAC7	8	32	3	22	0.02
GPAC7/8	9	32	3	22	0.02
GPAC10	13	41	4	24	0.04
GPAC13	16	53	4	32	0.08
GPAC16	20	66	5	35	0.16
GPAC18/20	24	80	6	45	0.28
GPAC22	28	95	8	50	0.45

partnumber					for fi	tting				
	MP	СО	CSC	CSECA	XLC	GKC	GC	GCV	CRC	XLBA
GPAC5	GPMP5	GPCO5	GPCSC5	GPCSECA5	GPXLC05		GPGC5	GPGCV5		GPXLBA05
GPAC6	GPMP6	GPCO6	GPCSC6	GPCSECA6	GPXLC0		GPGC6	GPGCV6	GPCRC6	GPXLBA0
GPAC7	GPMP7/8	GPCO7/8	GPCSC7/8	GPCSECA7/8	GPXLC1	GPGKC1	GPGC7/8		GPCRC7/8	GPXLBA1
GPAC7/8	GPMP7/8	GPCO7/8	GPCSC7/8	GPCSECA7/8	GPXLC1	GPGKC1	GPGC7/8	GPGCV8	GPCRC7/8	GPXLBA1
GPAC9	GPMP10	GPCO10	GPCSC10	GPCSECA10	GPXLC2	GPGKC2	GPGC10	GPGCV10	GPCRC10	GPXLBA2
GPAC10	GPMP10	GPCO10	GPCSC10	GPCSECA10	GPXLC2	GPGKC2	GPGC10	GPGCV10	GPCRC10	GPXLBA2
GPAC13	GPMP13	GPCO13	GPCSC13	GPCSECA13	GPXLC3	GPGKC3	GPGC13	GPGCV13	GPCRC13	GPXLBA3
GPAC16	GPMP16	GPCO16	GPCSC16	GPCSECA16	GPXLC4	GPGKC4	GPGC16	GPGCV16	GPCRC16	GPXLBA4
GPAC18/20	GPMP18/20	GPCO18/20	GPCSC18/20		GPXLC5	GPGKC5	GPGC18/20	GPGCV20		
GPAC22			GPCSC22			GPGKC6				

INFO

6

GREEN Pin'

Green Pin® Connecting Link Spare Kit GR8

Grade 80 spare kit for connecting link

- Material:
 - ial: alloy steel, grade 80, quenched and tempered self coloured

2.1 3.1

- Finish:
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification:

partnumber	diameter	width	diameter	width	weight
					each
	а	b	c	d	
	inch	inch	inch	inch	lbs
GPRMJ6	³ / ₁₆	1 ¹¹ / ₁₆	⁷ / ₁₆	¹³ / ₃₂	0.02
GPRMJ7/8	1/4	2 ¹ / ₈	¹ / ₂	⁹ / ₁₆	0.04
GPRMJ10	⁵ / ₁₆	2 ¹⁹ / ₃₂	¹⁹ / ₃₂	²³ / ₃₂	0.09
GPRMJ13	¹³ / ₃₂	3 ⁵ / ₁₆	²⁵ / ₃₂	¹³ / ₁₆	0.22
GPRMJ16	¹⁵ / ₃₂	4 ¹ / ₈	²⁹ / ₃₂	³¹ / ₃₂	0.33
GPRMJ18/20	¹⁹ / ₃₂	4 ¹³ / ₁₆	1 ¹ / ₁₆	1 ¹ / ₄	0.55
GPRMJ22	21/32	5 ²³ / ₃₂	1 ⁵ /32	1 ¹⁷ / ₃₂	0.84
GPRMJ26	²⁵ /32	6 ³ /8	1 ¹ / ₄	1 ²³ / ₃₂	1.19
GPRMJ32	15/16	7 ²⁵ / ₃₂	1 ¹⁵ / ₃₂	1 ³¹ / ₃₂	2.20

In mm

partnumber	diameter	width	diameter	width	weight
					each
	а	b		d	
	mm	mm	mm	mm	kg
GPRMJ6	5	43	11	10	0.01
GPRMJ7/8	6	54	13	14	0.02
GPRMJ10	8	66	15	18	0.04
GPRMJ13	10	84	20	21	0.1
GPRMJ16	12	105	23	25	0.15
GPRMJ18/20	15	122	27	32	0.25
GPRMJ22	17	145	29	39	0.38
GPRMJ26	20	162	32	44	0.54
GPRMJ32	24	198	37	50	1

partnumber	for fi	tting
	MJ	MJS
GPRMJ6	GPMJ6	
GPRMJ7/8	GPMJ7/8	GPMJS7/8
GPRMJ10	GPMJ10	GPMJS10
GPRMJ13	GPMJ13	GPMJS13
GPRMJ16	GPMJ16	
GPRMJ18/20	GPMJ18/20	
GPRMJ22	GPMJ22	
GPRMJ26	GPMJ26	
GPRM.132	GPM.132	

INFO

Green Pin® Latch GR8

steel

2.1

Forged latch for grade 80

- Material:
- Finish:
- painted yellow (J), red (R) or white. GPLF7 and GPLF8 are self coloured
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification:
- LF

partitumber	WIGHT	engen	pin	pin	each
	а	b	с	d	
	inch	inch	inch	inch	lbs
GPLF0	¹⁵ / ₁₆	1 ²³ / ₃₂	⁵ / ₃₂	¹⁵ / ₁₆	0.07
GPLF1	1 ⁷ / ₃₂	2 ⁵ / ₁₆	³ / ₁₆	1 ³ / ₁₆	0.15
GPLF2	1 ⁵ /8	2 ⁹ / ₁₆	³ / ₁₆	1 ⁹ / ₁₆	0.24
GPLF3	1 ⁵ /8	3 ¹ / ₈	1/4	1 ⁹ / ₁₆	0.40
GPLF4	1 ¹³ / ₁₆	3 3/16	1/4	1 ²⁵ / ₃₂	0.49
GPLF5	1 ³¹ / ₃₂	3 15/16	⁵ / ₁₆	1 ³¹ / ₃₂	0.73
GPLF6	2 5/32	4 11/16	¹³ / ₃₂	2 5/32	1.21
GPLF7	2	4 ¹⁹ / ₃₂	5/16	2 11/16	0.42
GPLF8	2 ³ / ₈	5 ⁹ / ₁₆	5/16	2 ²⁹ / ₃₂	0.75

In mm

partnumber	width	length	diameter	length	weight
			pin	pin	each
	а	b		d	
	mm	mm	mm	mm	kg
GPLF0	24	44	4	24	0.03
GPLF1	31	59	5	30	0.07
GPLF2	41	65	5	40	0.11
GPLF3	41	79	6	40	0.18
GPLF4	46	81	6	45	0.22
GPLF5	50	100	8	50	0.33
GPLF6	55	119	10	55	0.55
GPLF7	51	117	8	68	0.19
GPLF8	60	141	8	74	0.34

partnumber	for fitting					
	CSO	CSC	CSE	CSECA	GH	CST
GPLF0	GPCSO5/6	GPCSC5	GPCSE5/6	GPCSECA5		
		GPCSC6		GPCSECA6		
GPLF1	GPCSO7/8	GPCSC7/8	GPCSE7/8	GPCSECA7/8	GPGH1-GPGH2-GPGH3	GPCST75
GPLF2	GPCSO10	GPCSC10	GPCSE10	GPCSECA10	GPGH4	
GPLF3	GPCSO13	GPCSC13	GPCSE13	GPCSECA13	GPGH5 - GPGH8	
GPLF4	GPCSO16	GPCSC16	GPCSE16	GPCSECA16		
GPLF5	GPCSO18/20	GPCSC18/20	GPCSE18/20		GPGH10	
GPLF6	GPCSO22	GPCSC22			GPGH15	
GPLF7	GPCSO26					
GPLF8	GPCSO32					

INFO

6

Green Pin[®] Clevis Fittings GR10 Spare Kit

Grade 100 spare kit for clevis fittings

2.1 3.1

- Material:
 - alloy steel, grade 100, quenched and tempered self coloured
- Finish:
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)

Certification:

partnumber	diameter pin	length pin	diameter pin	length pin	each
	a	b	с	d	
	inch	inch	inch	inch	lbs
GPUAC6	⁵ / ₁₆	1 ³ / ₃₂	1/8	⁹ / ₁₆	0.02
GPUAC7	¹³ / ₃₂	1 ¹ / ₄	1/8	⁷ /8	0.04
GPUAC8	¹³ / ₃₂	1 ¹ / ₄	1/8	⁷ /8	0.04
GPUAC10	1/2	1 ⁵ /8	⁵ / ₃₂	¹⁵ / ₁₆	0.09
GPUAC13	⁵ /8	2 ³ / ₃₂	⁵ / ₃₂	1 ¹ / ₄	0.18
GPUAC16	²⁵ / ₃₂	2 ¹⁹ / ₃₂	³ / ₁₆	1 ³ /8	0.35
GPUAC20	¹⁵ / ₁₆	3 5/32	1/4	1 ²⁵ / ₃₂	0.62

partnumber	diameter	length	diameter	length	weight
	pin	pin	pin	pin	each
	а	b		d	
	mm	mm	mm	mm	kg
GPUAC6	8	28	3	14	0.01
GPUAC7	10	32	3	22	0.02
GPUAC8	10	32	3	22	0.02
GPUAC10	13	41	4	24	0.04
GPUAC13	16	53	4	32	0.08
GPUAC16	20	66	5	35	0.16
GPUAC20	24	80	6	45	0.28

partnumber	for fitting						
	UMP	UCO	UCSC	UXLC	UGC	UGCV	
GPUAC6	GPUMP6	GPUCO6	GPUCSC6	GPUXLC0	GPUGC6	GPUGCV6	
GPUAC7	GPUMP7	GPUCO7	GPUCSC7	GPUXLC07			
GPUAC8	GPUMP8	GPUCO8	GPUCSC8	GPUXLC1	GPUGC8	GPUGCV8	
GPUAC10	GPUMP10	GPUCO10	GPUCSC10	GPUXLC2	GPUGC10	GPUGCV10	
GPUAC13	GPUMP13	GPUCO13	GPUCSC13	GPUXLC3	GPUGC13	GPUGCV13	
GPUAC16	GPUMP16	GPUCO16	GPUCSC16	GPUXLC4	GPUGC16	GPUGCV16	
GPUAC20			GPUCSC20	GPUXLC5	GPUGC20	GPUGCV20	

INFO

Green Pin® Connecting Link Spare Kit GR10

Grade 100 spare kit for connecting link

2.1 3.1

- Material: alloy steel, grade 100, quenched and tempered self coloured
- Finish:
- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification:

P	pin	pin			each
	а	b	с	d	
	inch	inch	inch	inch	lbs
GPURMJ6	³ / ₁₆	1 ¹¹ / ₁₆	7/16	¹³ / ₃₂	0.02
GPURMJ8	1/4	2 ¹ / ₈	¹ / ₂	⁹ / ₁₆	0.05
GPURMJ10	⁵ / ₁₆	2 ¹⁹ / ₃₂	¹⁹ / ₃₂	²³ / ₃₂	0.05
GPURMJ13	¹³ / ₃₂	3 5/16	²⁵ / ₃₂	¹³ / ₁₆	0.11
GPURMJ16	¹⁵ / ₃₂	4 ¹ / ₈	²⁹ / ₃₂	³¹ / ₃₂	0.23
GPURMJ20	¹⁹ / ₃₂	4 ¹³ / ₁₆	1 ¹ / ₁₆	1 ¹ / ₄	0.34

URMJ

In mm

partnumber	diameter pin	length pin	diameter	width	weight each
	а	b	с	d	kg
	mm	mm	mm	mm	
GPURMJ6	5	43	11	12	0.01
GPURMJ8	6	57	13	15	0.02
GPURMJ10	8	66	17	17	0.02
GPURMJ13	10	84	20	22	0.05
GPURMJ16	12	105	25	25	0.1
GPURMJ20	17	122	32	31	0.15

partnumber	for fitting				
	UMJ	UMJT			
GPURMJ6	GPUMJ6				
GPURMJ8	GPUMJ8	GPUMJT15			
GPURMJ10	GPUMJ10	GPUMJT20			
GPURMJ13	GPUMJ13	GPUMJT30			
GPURMJ16	GPUMJ16				
GPURMJ20	GPUMJ20				

INFO

72

Green Pin® Latch GR10

Forged latch for grade 100

- Material:
- steel • Finish:
 - painted blue

2.1

- Temperature range: -40°F up to +392°F (-40°C up to +200°C)
- Certification:

ULF

С

partnumber	width	tengtri	pin	pin	each
	а	b	с	d	
	inch	inch	inch	inch	lbs
GPULF0	15/16	1 ²³ / ₃₂	⁵ / ₃₂	15/16	0.07
GPULF1	1 ⁷ / ₃₂	2 ⁵ / ₁₆	³ / ₁₆	1 ³ / ₁₆	0.15
GPULF2	1 5/8	2 ⁹ / ₁₆	3/16	1 ⁹ / ₁₆	0.24
GPULF3	1 ⁵ /8	3 ¹ / ₈	1/4	1 ⁹ / ₁₆	0.40
GPULF4	1 ¹³ / ₁₆	3 3/16	1/4	1 ²⁵ / ₃₂	0.44
GPULF5	1 ³¹ / ₃₂	3 15/16	5/16	1 ³¹ / ₃₂	0.88

In mm

partnumber	width	length	diameter	length	weight
			pin	pin	each
	а	b	с	d	
	mm	mm	mm	mm	kg
GPULF0	24	44	4	24	0.03
GPULF1	31	59	5	30	0.07
GPULF2	41	65	5	40	0.11
GPULF3	41	79	6	40	0.18
GPULF4	46	81	6	45	0.2
GPULF5	50	100	8	50	0.4

partnumber	for fitting					
	UCSO	UCSC	UCSCT			
GPULF0	GPUCSO6	GPUCSC6				
GPULF1	GPUCSO8	GPUCSC7	GPUCSCT15			
		GPUCSC8				
GPULF2	GPUCSO10	GPUCSC10	GPUCSCT20			
GPULF3	GPUCSO13	GPUCSC13	GPUCSCT30			
GPULF4	GPUCSO16	GPUCSC16				
GPULF5	GPUCSO20	GPUCSC20				

INFO

This catalogue may contain information that has not been updated since the release of this catalogue and has thus become outdated. Please consult the specific product pages on the Green Pin® website for the most up to date technical information.

INDEX BY CHAPTER

1	Links	
MS	Green Pin® Master Link EN 1677-4 GR8	
MTS	Green Pin® Master Link Assembly EN 1677-4 GR8	
CO	Green Pin® Omega Link EN 1677-1 GR8	
MP	Green Pin [®] Pear Shaped Link EN 1677-4 GR8	
MJ	Green Pin® Connecting Link EN 1677-1 GR8	
UMS	Green Pin® Master Link GR10	
UMTS	Green Pin [®] Master Link Assembly GR10	
UCO	Green Pin® Omega Link GR10	
UMP	Green Pin [®] Pear Shaped Link GR10	
UMJ	Green Pin® Connecting Link GR10	25
2	Swivels	
ELR	Green Pin® Needle Bearing Swivel EE GR8	
UELR	Green Pin [®] Needle Bearing Swivel EE GR10	29
3	Hooks	
CSO	Green Pin® Sling Hook E EN 1677-2 GR8	
CSC	Green Pin® Sling Hook CL EN 1677-2 GR8	
CSE	Green Pin® Sling Hook SE EN 1677-2 GR8	
CSECA.	Green Pin® Sling Hook SCL EN 1677-2 GR8	
XLO	Green Pin® Self Locking Hook E EN 1677-3 GR8	
XLC	Green Pin® Self Locking Hook EN 1677-3 CL GR8	
XLE	Green Pin® Self Locking Hook S EN 1677-3 GR8	
XLBA	Green Pin® Self Locking Hook SCL EN 1677-3 GR8	
CRO	Green Pin [®] Grab Hook E EN 1677-1 GR8	
CRC	Green Pin [®] Grab Hook CL EN 1677-1 GR8	
GH	Green Pin® Excavator Hook GR8	
CFO	Green Pin® Foundry Hook E GR8	
UCSO	Green Pin® Sling Hook E GR10	
UCSC	Green Pin® Sling Hook CL GR10	45
UXLO	Green Pin® Self Locking Hook E GR10	46
UXLC	Green Pin® Self Locking Hook CL GR10	47
UXLE	Green Pin® Self Locking Hook S GR10	
UCRO	Green Pin [®] Grab Hook E GR10	
UCRC	Green Pin® Grab Hook CL GR10	

Lifting Eyes

4

5

ALUNC	
ADAUNC	
PAS	

Shortening Clutches

GC Green Pin [®] Shortening Clutch EN 1677-1 GR8	59
GCV Green Pin [®] Shortening Clutch with Lock EN 1677-1 GR8	60
GDV Green Pin [®] Shortening Clutch with Double Lock EN 1677-1 GR8	61
UGC Green Pin [®] Shortening Clutch GR10	62
UGCV Green Pin [®] Shortening Clutch with Lock GR10	63
UGDV Green Pin [®] Shortening Clutch with Double Lock GR10	64

Spare Parts

6	Spare Parts	
VR	Green Pin [®] Self Locking Hooks GR8/GR10 Spare Kit	67
AC	Green Pin [®] Clevis Fittings GR8 Spare Kit	68
RMJ	Green Pin [®] Connecting Link Spare Kit GR8	69
LF	Green Pin [®] Latch GR8	70
UAC	Green Pin® Clevis Fittings GR10 Spare Kit	71
URMJ	Green Pin [®] Connecting Link Spare Kit GR10	72
ULF	Green Pin [®] Latch GR10	73

Creen Pin® Clevis Fittings GR10 Spare Kit		71
Green Pin® Clevis Fittings GR8 Spare Kit	ОАС АС	
Green Pin [®] Connecting Link EN 1677-1 GR8	MJ	20
Green Pin [®] Connecting Link GR10	UMJ	25
Green Pin® Connecting Link Spare Kit GR10	URMJ	72
Green Pin® Connecting Link Spare Kit GR8	RMJ	69
E		
Green Pin® Excavator Hook GR8	GH	42
F		
Green Pin® Foundry Hook E GR10	UCFO	51
Green Pin [®] Foundry Hook E GR8	CFO	43
G		
Green Pin® Grab Hook CL EN 1677-1 GR8	CRC	41
Green Pin® Grab Hook CL GR10	UCRC	50
Green Pin [®] Grab Hook E EN 1677-1 GR8	CRO	40
Green Pin [®] Grab Hook E GR10	UCRO	49
L		
Green Pin [®] Latch GR10	ULF	73
Green Pin [®] Latch GR8	LF	70
Green Pin® Lifting Eye UNC GR8	ALUNC	55
Μ		
Green Pin [®] Master Link Assembly EN 1677-4 GR8	MTS	
Green Pin [®] Master Link Assembly GR10	UMIS	
Green Pin [®] Master Link EN 16/7-4 GR8	MS	10
Green Pin [®] Master Link GR10		
N		
Green Pin [®] Needle Bearing Swivel EE GR10	UELR	29
Green Pin [®] Needle Bearing Swivel EE GR8	ELR	28
0		
Green Pin® Omega Link EN 1677-1 GR8	CO	
Green Pin [®] Omega Link GR10	UCO	23
Ρ		
Green Pin [®] Pear Shaped Link EN 1677-4 GR8	MP	
Green Pin [®] Pear Shaped Link GR10	UMP	24
R		
Green Pin® Rotating Hoist Ring UNC GR8	ADAUNC	56
S		
Green Pin® Self Locking Hook CL GR10	UXLC	47
Green Pin [®] Self Locking Hook E EN 1677-3 GR8	XLO	
Green Pin [®] Self Locking Hook E GR10	UXLO	46
Green Pin [®] Self Locking Hook EN 16/7-3 CL GR8	XLC	
Green Pin [®] Solf Locking Hook S EN 1077-3 GR8		۵۵ ۱۵
Green Pin [®] Self Locking Hook S GRID	ΟΛΕΕ ΧΙ ΒΔ	40 79
Green Pin [®] Self Locking Hooks GR8/GR10 Spare Kit	VR	
Green Pin [®] Shortening Clutch EN 1677-1 GR8	GC	
Green Pin [®] Shortening Clutch GR10	UGC	62
Green Pin [®] Shortening Clutch with Double Lock EN 1677-1 GR8	GDV	61
Green Pin [®] Shortening Clutch with Double Lock GR10	UGDV	64
Green Pin® Shortening Clutch with Lock EN 1677-1 GR8	GCV	60
Green Pin® Shortening Clutch with Lock GR10	UGCV	63
Green Pin [®] Sling Hook CL EN 1677-2 GR8	CSC	33
Green Pin [®] Sling Hook CL GR10	UCSC	45
Green Pin [®] Sling Hook E EN 1677-2 GR8	CSO	
Green PIN [®] Sling Hook E GKIU		44
Green Din® Sling Hook SE EN 1677-2 GR8	CSECA CCE	CC ZA
ACCITENT SUBJECTION SE LIVION Z CINO		
W		
Green Pine Weld-On Transport Ring	PAS	57

Α		
AC	Green Pin® Clevis Fittings GR8 Spare Kit	68
ADAUNC	Green Pin [®] Rotating Hoist Ring UNC GR8	56
ALUNC	Green Pin [®] Lifting Eye UNC GR8	55
с		
CFO	Green Pin [®] Foundry Hook E GR8	43
со	Green Pin [®] Omega Link EN 1677-1 GR8	
CRC	Green Pin [®] Grab Hook CL EN 1677-1 GR8	
CRO	Green Pin [®] Grab Hook E EN 1677-1 GR8	
CSC	Green Pin [®] Sling Hook CL EN 1677-2 GR8	33
CSE	Green Pin [®] Sling Hook SE EN 1677-2 GR8	
CSECA	Creen Din [®] Sling Hook SCL EN 1677-2 CP8	
CSO	Green Pin [®] Sling Hook E EN 1677-2 GR8	
E	Crean Din [®] Needle Desving Cuivel FF CD9	20
ELK	Green Pin- Needle Bearing Swivel EE GR8	28
G		
GC	Green Pin® Shortening Clutch EN 1677-1 GR8	59
GCV	Green Pin [®] Shortening Clutch with Lock EN 1677-1 GR8	60
GDV	Green Pin® Shortening Clutch with Double Lock EN 1677-1 GR8	61
GH	Green Pin® Excavator Hook GR8	42
L		
LF	Green Pin [®] Latch GR8	70
м		
MJ	Green Pin® Connecting Link EN 1677-1 GR8	20
MP	Green Pin [®] Pear Shaped Link EN 1677-4 GR8	
MS	Green Pin [®] Master Link EN 1677-4 GR8	
MTS	Green Pin® Master Link Assembly EN 1677-4 GR8	
P		
PAS	Green Pin [®] Weld-On Transport Ring	57
D		
RMJ	Green Pin [®] Connecting Link Spare Kit GR8	69
U		
UAC	Green Pin [®] Clevis Fittings GR10 Spare Kit	
UCFO	Green Pin [®] Foundry Hook E GR10	
UCO	Green Pin® Omega Link GR10	23
UCRC	Green Pin® Grab Hook CL GR10	50
UCRO	Green Pin® Grab Hook E GR10	49
UCSC	Green Pin® Sling Hook CL GR10	45
UCSO	Green Pin® Sling Hook E GR10	44
UELR	Green Pin [®] Needle Bearing Swivel EE GR10	29
UGC	Green Pin® Shortening Clutch GR10	62
UGCV.	Green Pin [®] Shortening Clutch with Lock GR10	
UGDV	Green Pin [®] Shortening Clutch with Double Lock GR10	
UII F	Green Pin [®] Latch GR10	04 77
	Green Din [®] Connecting Link CP10	7ວ າະ
∪™IJ LIMD	Croon Din [®] Door Shaped Link CD10	25
	Croop Ding Mactor Link CD10	
UMS	Croop Ding Master Link GKIU	
UMIS	Green Pin [®] Master Link Assembly GK10	
UKMJ	Green Pin [®] Connecting Link Spare Kit GR10	
	Green Pin [®] Self Locking Hook CL GR10	
UXLE	Green Pin [®] Self Locking Hook S GR10	
UXLO	Green Pin® Self Locking Hook E GR10	46
V		
V VR	Green Pin® Self Locking Hooks GR8/GR10 Spare Kit	67
V VR X	Green Pin® Self Locking Hooks GR8/GR10 Spare Kit	67
VR VR X XLBA	Green Pin® Self Locking Hooks GR8/GR10 Spare Kit Green Pin® Self Locking Hook SCL EN 1677-3 GR8	67
V VR X XLBA XLC	Green Pin® Self Locking Hooks GR8/GR10 Spare Kit Green Pin® Self Locking Hook SCL EN 1677-3 GR8 Green Pin® Self Locking Hook EN 1677-3 CL GR8	
V VR X XLBA XLC XLE	Green Pin® Self Locking Hooks GR8/GR10 Spare Kit Green Pin® Self Locking Hook SCL EN 1677-3 GR8 Green Pin® Self Locking Hook EN 1677-3 CL GR8 Green Pin® Self Locking Hook S EN 1677-3 GR8	

TABLE OF CONTENTS

Go to <u>http://www.vanbeest.nl/general-terms-and-conditions</u> to read our general terms and conditions per sales office.

79

Green Pin[®]: the leading brand for premium quality chain and wire rope fittings in the world

- ✓ Premium quality lifting and lashing equipment
- ✔ Supplied with a range of certifications (e.g. DNV GL, Lloyd's)
- ✔ Unrivalled stock availability of 99%
- ✓ Comprehensive, worldwide support
- ✔ Available in over 90 countries worldwide

greenpin.com

Member of Van Beest International

VAN BEEST B.V. Head Office Industrieweg 6 3361 HJ Sliedrecht The Netherlands Telephone +31 184 41 33 00 E-mail sales@vanbeest.eu

VAN BEEST GmbH

Märkische Straße 115/117 44141 Dortmund Germany Telephone +49 231 58 44 230 E-mail sales@vanbeest.eu

VAN BEEST FRANCE S.A.S.

Route de Chanier 63250 Celles sur Durolle France Telephone +33 (0)4 73 51 89 51 E-mail sales@vanbeest.eu

VAN BEEST USA, L.L.C.

US main office 5615 W. Fuqua, Building B Houston, TX 77085 United States

Chicago office 158 South Pinnacle Drive Romeoville, IL 60446 United States

Telephone +1 713 674 57 53 E-mail sales.us@vanbeest.com

VAN BEEST DO BRASIL

Rua Alexandre Dumas, 1711, 5th Floor Chácara Santo Antônio, 04717-004 Sao Paulo-SP Brazil Telephone +55 (11) 2599 8364 E-mail vendas@vanbeest.com.br

GREEN TO GO

This catalogue may contain information that has not been updated since the release of this catalogue and has thus become outdated Please consult the specific product pages on the Green Pin® website for the most up to date technical information.

Green Pin[®] Lifting Chain Grade 10 lifting chain

Highlights

- Reliable Green Pin[®] quality and support
- Superior stock availability of 99%

Description

The Green Pin[®] Lifting Chain is a grade 10 lifting chain. Lifting chain can be delivered in complete drums. The Green Pin[®] Lifting Chain is available in a range from 6 mm up to 20 mm.

Product details

Productcode	UCHAIN				
Material	alloy steel, Grade 10, quenched and tempered				
Safety factor	MBL equals 4 x WLL				
Finish	painted blue				
Certification	2.1 2.2 3.1 MTCb				

Green Pin[®] Lifting Chain

Technical specifications in milimeters

Ar ^{iicle} code	working load limit	unts per meter	Net weight	Adiameter	8 length inside	Cniethoutside	Netweight
GPUCHAIN6	1,4	55,56	0.01	6	18	22	0.01
GPUCHAIN8	2,6	41,67	0.04	8	24	30	0.04
GPUCHAIN10	4	33,33	0.07	10	30	36	0.07
GPUCHAIN13	6,8	25,64	0.15	13	39	48	0.15
GPUCHAIN16	10,3	20,83	0.28	16	48	58	0.28
GPUCHAIN20	16	16,67	0.71	20	60	72	0.71

Green Pin[®] Lifting Chain

Technical specifications in inches

Rritcle code	Let meight	Adameerinch	Blengthinsdelinchi	Cwieth inside linch	Net weight
GPUCHAIN6	0.03	1/4	23/32	7/8	0.03
GPUCHAIN8	0.08	5/16	15/16	1 3/16	0.08
GPUCHAIN10	0.15	13/32	1 3/16	1 13/32	0.15
GPUCHAIN13	0.34	1/2	1 17/32	1 7/8	0.34
GPUCHAIN16	0.61	5/8	17/8	2 9/32	0.61
GPUCHAIN20	1.56	25/32	2 3/8	2 27/32	1.56

Technical drawing

Green Pin[®] Lifting Chain

Green Pin[®] Lifting Chain EN818-2 Grade 8 lifting chain EN818-2

Highlights

- Reliable Green Pin[®] quality and support
- ✓ Superior stock availability of 99%

Description

The Green Pin[®] Lifting Chain EN818-2 is a grade 8 lifting chain according to European standard for lifting chains in short link.. Lifting chain can be delivered in complete drums or in cut lengths from diameter 22 mm on request. The Green Pin[®] Lifting Chain EN818-2 is available in a range from 6 mm up to 32 mm.

Product details

Productcode	CHAIN						
Material	alloy steel, Grade 8, quenched and tempered						
Safety factor	MBL equals 4 x WLL						
Finish	painted black						
Certification	2.1 2.2 3.1 MTCb DGUV						

Green Pin[®] Lifting Chain EN818-2

Technical specifications in milimeters

Article code	workingload limit	lints per neter	Netweight	Adiameter	Blengthinside	Cwidth outside	Net meight
GPCHAIN6	1,12	55,56	0.01	6	22	20	0.01
GPCHAIN7	1,5	47,62	0.02	7	21	26	0.02
GPCHAIN8	2	41,67	0.04	8	24	30	0.04
GPCHAIN10	3,15	33,33	0.07	10	30	36	0.07
GPCHAIN13	5,3	25,64	0.15	13	39	47	0.15
GPCHAIN16	8	20,83	0.27	16	48	58	0.27
GPCHAIN20	12,5	16,67	0.54	20	60	72	0.54
GPCHAIN22	15	15,15	0.76	22	66	79	0.76
GPCHAIN26	21,2	12,82	1.19	26	78	93	1.19
GPCHAIN32	31,5	10,42	2.17	32	96	112	2.17

Green Pin[®] Lifting Chain EN818-2

Technical specifications in inches

Article code	Netweight	Adianaeaetinchi	8 length inside linch	Cwidthinside linch	Het wegnt
GPCHAIN6	0.03	1/4	7/8	25/32	0.03
GPCHAIN7	0.05	9/32	13/16	1 1/32	0.05
GPCHAIN8	0.08	5/16	15/16	1 3/16	0.08
GPCHAIN10	0.15	13/32	1 3/16	1 13/32	0.15
GPCHAIN13	0.32	1/2	1 17/32	1 27/32	0.32
GPCHAIN16	0.58	5/8	17/8	2 9/32	0.58
GPCHAIN20	1.18	25/32	2 3/8	2 27/32	1.18
GPCHAIN22	1.68	7/8	2 19/32	3 1/8	1.68
GPCHAIN26	2.62	1 1/32	3 1/16	3 21/32	2.62
GPCHAIN32	4.78	1 1/4	3 25/32	4 13/32	4.78

Technical drawing

Green Pin[®] Lifting Chain EN818-2

